

LIZ GUZMAN-RAMIREZ ANALYSIS TOOLS

Slides taken from the 15th Synthesis Imaging Workshop by Ylva Pihlstr.m

science.nrao.edu/science/meeFngs/2016/ 15th-synthesis- imaging-workshop/ SIW2016_Pihlstrom.pdf

Visualizing

- Imaging will create a spectral line cube, which is 3-dimensional: RA, Dec and Velocity.
- With the cube, we usually visualize the information by making I-D or 2-D projections:
 - Line profiles (I-D slices along velocity axis)
 - Channel maps (2-D slices along velocity axis)
 - 'Movies' can be formed from the channel maps
 - Moment maps (integration along the velocity axis)
 - Position-velocity plots (slices along spatial dimension)
- 3-D rendering programs also exist

Visualizing 3-D

Some software allows 3-D visualization of cubes:

SAOimage DS9:

http://ds9.si.edu/site/Home.html

Karma package:

http://www.atnf.csiro.au/computin g/software/karma/

Karma package; L. Matthews

I-D line profiles

- Line profiles show changes in line shape, width and depth as a function of position.
- Can give information of relative position of features (absorption in front)
- Velocity width

EVN+MERLIN 1667 MHz OH maser emission and absorption spectra in a luminous infrared galaxy (IIIZw35).

2-D channel maps

- Channel maps show how the spatial distribution of the line feature changes with frequency/velocity.
- Information about kinematics.

Contours continuum emission, grey scale 1667 MHz OH line emission in IIIZw35.

Rotating disk model

Mean Velocity Field

Moment analysis

 You might want to derive parameters such as integrated line intensity, centroid velocity of components and line width - all as functions of positions. Estimate using the moments of the line profile:

Integrated intensity

Moment
$$0 = \int S_v dv$$

Intensity weighted velocity

Moment 1 =
$$\langle V \rangle = \frac{\int S_v v dv}{\int S_v dv}$$

Intensity weighted velocity dispersion

Moment 2 =
$$\langle V^2 \rangle^{1/2} = \sqrt{\frac{\int S_v(v - \langle V \rangle)^2 dv}{\int S_v dv}}$$

- Moments sensitive to noise so clipping is required
- Higher order moments depend on lower ones so progressively noisier.

XMOM, MOMNT/immoments

Image Analysis of TWHydra

Using the CASA guides: https://casaguides.nrao.edu/index.php/
 First_Look_at_Image_Analysis

Using the CASA guides: https://casaguides.nrao.edu/index.php/
 TWHydraBand7 Imaging 4.5#Image Analysis

Moment 0

os.system("rm -rf sis14_twhya_n2hp.mom0")
immoments("sis14_twhya_n2hp.im age",
outfile="sis14_twhya_n2hp.mom0",
includepix=[20e-3,100],
chans="4~12", moments=0)

Moment 1


```
os.system("rm -rf sis14_twhya_n2hp.mom1") immoments("sis14_twhya_n2hp.im age", outfile="sis14_twhya_n2hp.mom1", includepix=[40e-3,100], chans="4~12", moments=1)
```


Moment 2


```
os.system("rm -rf sis14_twhya_n2hp.mom1") immoments("sis14_twhya_n2hp.im age", outfile="sis14_twhya_n2hp.mom1", includepix=[40e-3,100], chans="4~12", moments=2)
```


Links

https://casa.nrao.edu/docs/cookbook/

Image analysis chapter:

https://casa.nrao.edu/docs/cookbook/

casa_cookbook007.html

CASA toolkit:

https://casa.nrao.edu/docs/CasaRef/image.moments.html