

EUROPEAN ARC ALMA Regional Centre || Allegro

ALMA CASA Calibration

Allegro - CASA Tutorial Day

Luke T. Maud

3 March 2017

Remove effects of the instrument itself

Remove effects of the atmosphere

Scaling to the correct flux

Please ask questions throughout if anything is unclear

Remove effects of the instrument itself

- variations in frequency as a function of amplitude and phase
- variation in receiver noise (Tsys)
- effects of shadowing
- antenna positions
- Remove effects of the atmosphere
 - atmospheric variability (phase)
 - atmospheric attenuation as function of time (Tsys)
- Scaling to the correct flux

-using an astronomical source

Remove effects of the instrument itself

- variations in frequency as a function of amplitude and phase
- variation in receiver noise (Tsys)
- effects of shadowing
- antenna positions
- Remove effects of the atmosphere
 - atmospheric variability (phase) WVRs + Gain Calibrator
 - atmospheric attenuation as function of time (Tsys) Tsys load
- Scaling to the correct flux

PEAN ARC

ALMA Regional Centre || Allegro

-using an astronomical source

- Flux Calibrator

- Bandpass

- Tsys load
- Flagging
- All sky runs

All run from the scriptForPI.py

- manual calibration
- uid__XXXXX_scriptForCalibration.py

- pipeline calibration
- casa_piperestorescript.py
- casa_pipescript.py

All run from the scriptForPI.py

- pipeline calibration
- casa_piperestorescript.py
- casa_pipescript.py
 - + scriptForImagingPrep.py
 - + scriptForImaging.py

All run from the scriptForPI.py

- manual calibration

- uid__XXXXX_scriptForCalibration.py

- + scriptForImagingPrep.py
- + scriptForImaging.py

- + scriptForImagingPrep.py
- + scriptForImaging.py

Cali	bration - v	vith CASA
# ALMA Data Reduction # Calibration	MANUAL Script	PIPELINE Image: Marcel and Marcel
<pre>thesteps = [] step_title = {0: 'In</pre>	Please	e navigate to your:
4: 'Ge 5: 'Ge 6: 'Ge 7: 'Ap 8: 'Sp	'uid_XXXXX_	_scriptForCalibration.py'
9: 'L' 10: 'l 11: 'h 12: 'S 13: 'f		OR
14: 'S 15: 'C 16: 'S 17: 'A 18: 'SD	pipeline- ۷	weblog -> index.html
<pre>19: 's if 'applyonly' not s try: print 'List of sta thesteps = mysteps except: print 'global vari</pre>	> cd /lustr open_CASA_tr	e/allegro/home/guestX/ raining_day/analysis/guestX
<pre>if (thesteps==[]): thesteps = range(0,) print 'Executing all EUROPEAN ARC ALMA Regional Centre II</pre>	len(step_title)) l steps: ', thesteps Allegro	17. hif_applycal: Apply calibrations from context 18. hif_makeimlist: Set-up image parameters for calibrator imaging 19. hif_makeimages: Make calibrator images

MANUAL

ALMA Data Reduction Script

Calibration

thesteps = []

step_title = {0: 'Import of the ASDM',

- 1: 'Fix of SYSCAL table times',
- 2: 'listobs',
- 'A priori flagging',
- 4: 'Generation and time averaging of the WVR cal table',
- 'Generation of the Tsys cal table',
- 6: 'Generation of the antenna position cal table',
- 7: 'Application of the WVR, Tsys and antpos cal tables',
- 8: 'Split out science SPWs and time average',
- 9: 'Listobs, and save original flags',
- 10: 'Initial flagging',
- 11: 'Putting a model for the flux calibrator(s)',
- 12: 'Save flags before bandpass cal',
- 13: 'Bandpass calibration',
- 14: 'Save flags before gain cal',
- 15: 'Gain calibration',
- 16: 'Save flags before applycal',
- 17: 'Application of the bandpass and gain cal tables',
- 18: 'Split out corrected column',
- 19: 'Save flags after applycal'}

if 'applyonly' not in globals(): applyonly = False
try:

print 'List of steps to be executed ...', mysteps

thesteps = mysteps

except:

print 'global variable mysteps not set.'

if (thesteps==[]):

thesteps = range(0,len(step_title))

print 'Executing all steps: ', thesteps

EUROPEAN ARC

ALMA Regional Centre || Allegro

PIPELINE

Home By Topic By Task

Task Summaries

Task

1. hifa_importdata: Register measurement sets with the pipeline

2. hifa_flagdata: ALMA deterministic flagging

3. hifa_fluxcalflag: Flag spectral features in solar system flux calibrators

9 4. hif_rawflagchans: Flag channels in raw data

5. hif_refant: Select reference antennas

6. hifa_tsyscal: Calculate Tsys calibration

7. hifa_tsysflag: Flag Tsys calibration

O 8. hifa_antpos: Correct for antenna position offsets

9. hifa_wvrgcalflag: Calculate and flag WVR calibration

10. hif_lowgainflag: Flag antennas with low gain

• 11. hif_gainflag: Flag antennas with gain outliers

12. hif_setjy: Set calibrator model visibilities

13. hifa_bandpass: Phase-up bandpass calibration

14. hifa_spwphaseup: Spw phase offsets calibration

15. hifa_gfluxscale: Transfer fluxscale from amplitude calibrator

16. hifa_timegaincal: Gain calibration

17. hif_applycal: Apply calibrations from context

18. hif_makeimlist: Set-up image parameters for calibrator imaging

19. hif_makeimages: Make calibrator images

MANUAL

PIPELINE

Home By Topic By Task

Task Summaries

19. hif_makeimages: Make calibrator images

Calibration (Tsys) AntPos, WVR PIPELINE

MANUAL

```
os.system('rm -rf uid A002 Xa44acb Xadb.ms.tsys')
gencal(vis = 'uid A002 Xa44acb Xadb.ms',
  caltable = 'uid A002 Xa44acb Xadb.ms.tsys',
  caltype = 'tsys')
```

Flagging edge channels

```
flagdata(vis = 'uid A002 Xa44acb Xadb.ms.tsys',
  mode = 'manual',
  spw = '9:0~3;124~127,11:0~3;124~127,13:0~3;124~127,15:0~3;124~127',
  flagbackup = F)
```

- gencal this generates the Tsys correction table
- flagdata used to flag the bad response TDM edge channels

6. hifa_tsyscal 7. hifa_tsysflag A 8. hifa_antpos 9. hifa_wvrgcalflag

Weblog

WHY? : Correct for sky and receiver noise/variation Plots : in 'QA' (or 'calibration') directory / weblog **'*tsys*plots'**

Calibration - Tsys, AntPos, WVR

MANUAL

os.system('rm -rf uid___A002_Xa44acb_Xadb.ms.antpos')

gencal(vis = 'uid___A002_Xa44acb_Xadb.ms',

caltable = 'uid___A002_Xa44acb_Xadb.ms.antpos',

caltype = 'antpos',

antenna = 'DA45, DA51, DA53, DA55, DA58, DA60, DA63, DV01, DV03, DV04, DV08, DV
18, DV19, DV24, PM01, PM02, PM03, PM04',

parameter = [-2.38629e-04,6.51773e-04,2.24732e-04,2.86116e-05,-5.424 -2.70048e-05,-1.74361e-04,-2.25566e-04,-7.66657e-05,-7.26511e-04,-2.7060 .25562e-05,-4.89141e-04,-1.33922e-04,-3.32959e-04,-2.69390e-04,7.35842e-8316e-04,-1.34949e-05,-5.56033e-04,-1.81481e-04,4.73415e-05,-4.94519e-04 29e-05,-1.77334e-04,-2.49834e-04,5.08055e-05,2.10684e-05,-2.19155e-04,-9 104,-2.88958e-04,4.48046e-04,-1.07709e-03,-6.35845e-04,-4.46767e-04,-1.07 1,1.40105e-04,6.45677e-04,-4.75390e-04,-1.65702e-04,4.36814e-04,-1.03487e 762e-04,-2.25950e-04,4.71491e-05,-4.81501e-04,-1.01380e-04,5.41472e-04,8 104,4.63888e-04,-1.72769e-03,-1.29760e-03,5.52132e-04,-1.73621e-03,-1.023 11.65628e-03,-1.30656e-03])

- gencal - this generates the antpos correction table - comment out/in the parameters

PIPELINE

Res

Anten

The fol

Meas

uid___

5. hif_refant 6. hifa_tsyscal 7. hifa_tsysflag 9. hifa_antpos 9. hifa_wvrgcalflag 10. hif_lowgainflag		
6. hifa_tsyscal 7. hifa_tsysflag 9. hifa_antpos 9. hifa_wvrgcalflag 10. hif_lowgainflag	5. hif_refant	
7. hifa_tsysflag 9 8. hifa_antpos ? 9. hifa_wvrgcalflag ? 10. hif_lowgainflag ? 11. hif_coinfloc ^	6. hifa_tsyscal	
8. hifa_antpos ? 9. hifa_wvrgcalflag ? 10. hif_lowgainflag ? 11. hif_coinflag .	7. hifa_tsysflag	0
9. hifa_wvrgcalflag 10. hif_lowgainflag	8. hifa_antpos	2
10. hif_lowgainflag	9. hifa_wvrgcalflag	Θ
11 bif gainflag	10. hif_lowgainflag	
	11 bif gainflag	•

Weblog

WHY? : Correct for antenna pad location

Plots : none - tabular list of offsets

Calibration - Tsys, AntPos WVR MANUAL

<pre>wvrgcal(vis = 'uidA002_Xa44acb_Xadb.ms',</pre>
<pre>caltable = 'uidA002_Xa44acb_Xadb.ms.wvr',</pre>
spw = [17, 19, 21, 23],
smooth = '6.048s',
toffset = 0,
tie = ['W33A,J1733-1304'],
statsource = 'W33A')

 wvrgcal - reads the water vapour radiometer signals per antenna and creates the antenna based phase solutions

9. hifa_wvrgcalflag	
10. hif_lowgainflag	
11. hif_gainflag	0
12. hif_setjy	
13. hifa_bandpass	
14. hifa spwphaseup	

Weblog

EUROPEAN ARC ALMA Regional Centre || Allegro WHY? : Correct for atmospheric phase variations caused by the water vapour - short term Plots : in 'QA' (or 'calibration') directory / weblog '*wvr.smooth.plots'

The atmosphere is continually varying - when on source and when on the calibrators - WVR acts to reduce the phase variations on ALL sources!

-15

20

Y after

Scan

X after

– Y before

X before

Calibration - intermediate 'split'

MANUAL

ALMA Data Reduction Script # Calibration thesteps = [] step title = {0: 'Import of the ASDM', 1: 'Fix of SYSCAL table times', 2: 'listobs'. 'A priori flagging', 4: 'Generation and time averaging of the WVR cal table'. 5: 'Generation of the Tsys cal table', 6: 'Generation of the antenna position cal table', 7: 'Application of the WWR, Tays and antros cal tables', Split out science SPWs and time average'. 9: 'Listobs, and save original flags', 19: 'Initial flagging', 11: 'Putting a model for the flux calibrator(s)', 12: 'Save flags before bandpass cal', 13: 'Bandpass calibration', 14: 'Save flags before gain cal', 15: 'Gain calibration', 16: 'Save flags before applycal', 17: 'Application of the bandpass and gain cal tables', 18: 'Split out corrected column', 19: 'Save flags after applycal'} if 'applyonly' not in globals(): applyonly = False try: print 'List of steps to be executed ...', mysteps thesteps = mysteps except: print 'global variable mysteps not set.' if (thesteps==[]): thesteps = range(0,len(step_title)) print 'Executing all steps: ', thesteps EUROPEAN ARC ALMA Regional Centre || Allegro

PIPELINE

Home By Topic By Task

Task Summaries

Task

1. hifa_importdata: Register measurement sets with the pipeline

2. hifa_flagdata: ALMA deterministic flagging

3. hifa_fluxcalflag: Flag spectral features in solar system flux calibrators

• 4. hif_rawflagchans: Flag channels in raw data

5. hif_refant: Select reference antennas

6. hifa_tsyscal: Calculate Tsys calibration

0 7. hifa_tsysflag: Flag Tsys calibration

98. hifa_antpos: Correct for antenna position offsets

9. hifa_wvrgcalflag: Calculate and flag WVR calibration

10. hif_lowgainflag: Flag antennas with low gain

9 11. hif_gainflag: Flag antennas with gain outliers

12. hif_setjy: Set calibrator model visibilities

13. hifa_bandpass: Phase-up bandpass calibration

14. hifa_spwphaseup: Spw phase offsets calibration

15. hifa_gfluxscale: Transfer fluxscale from amplitude calibrator

16. hifa_timegaincal: Gain calibration

17. hif_applycal: Apply calibrations from context

18. hif_makeimlist: Set-up image parameters for calibrator imaging

19. hif_makeimages: Make calibrator images

Calibration - The data

Bandpass - Flux Cal - [Gain Cal - Source] x repeat

weblog - hif_applycal (after calibration only)

Calibration - The data

Bandpass - Flux Cal - [Gain Cal - Source] x repeat

Plots : plotms(vis) - set colorize to 'field' & channel averaging to 999999 - yaxis = 'phase', iteraxis='baseline' weblog - hif_applycal (after calibration only)

EUROPEAN ARC

Calibration - Bandpass

- strong source with enough S/N per channel (caution v.high S/N if your target is strong in continuum and you search for a weak line check with your Contact Scientist)
- observed 5-10 minutes at start of observing run
- The Steps
 - 1 must 'phase-up' simple phase calibration on selected narrow range of channels to correct for decorrelation with time
 - 2 apply phase solution 'on-the-fly' and correct for the frequency response

Calibration - Bandpass (1) MANUAL I PIPELINE

gaincal(vis = 'uid___A002_Xa44acb_Xadb.ms.split', caltable = 'uid___A002_Xa44acb_Xadb.ms.split.ap_pre_bandpass', field = '0', # J1733-1304 spw = '0:1536~2304,1:1536~2304,2:1536~2304,3:1536~2304', scan = '1,2,', solint = 'int', refant = 'DA59', calmode = 'p')

- gaincal - creates antenna based solutions to solve phases

- caltable table that will hold solutions
- spw select centre of bandwidth (dependent on width)
- calmode p for phase only
- refant reference antenna centrally located

13. hifa_bandpass

- 14. hifa_spwphaseup
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist
- 19. hif_makeimages

Weblog

WHY? :Phase up - solve phases with time ! Plots : in 'QA' (or 'calibration') directory / weblog '*ap_pre_bandpass.plots'

Calibration - Bandpass (1) MANUAL PIPELINE

- gaincal creates antenna based solutions to solve phases
 - caltable table that will hold solutions
 - spw select centre of bandwidth (dependent on width)
 - calmode p for phase only
 - refant reference antenna centrally located

PIPEL

13. hifa_bandpass

- 14. hifa_spwphaseup
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist
- 19. hif_makeimages

Weblog

WHY? :Phase up - solve phases with time ! Plots : in 'QA' (or 'calibration') directory / weblog '*ap_pre_bandpass.plots'

Calibration - Bandpass (1)

Calibration - Bandpass (2)

MANUAL

bandpass(vis = 'uid___A002_Xa44acb_Xadb.ms.split', caltable = 'uid___A002_Xa44acb_Xadb.ms.split.bandpass_smooth20ch', field = '0', # J1733-1304 scan = '1,2,', solint = 'inf,4MHz', combine = 'scan', refant = 'DA59', solnorm = True, bandtype = 'B', gaintable = 'uid___A002_Xa44acb_Xadb.ms.split.ap_pre_bandpass')

- bandpass creates antenna based solutions for amp & phase with Freq.
 - caltable table that will hold solutions
 - combine scan all data needs to be combined for each SPW
 - bandtype B for bandpass. BP for B-poly if you bandpass is noisy - use with care

7. hifa_tsysflag	0	Plots
8. hifa_antpos	0	Plots show the bandpass correction ap
9. hifa_wvrgcalflag	Θ	vs frequency for the typical antenna.
10. hif_lowgainflag		Click the summary plots to enlarge then
11. hif_gainflag	9	uid A002 Vb62a5b V222
12. hif_setjy		uidA002_AD0283D_A333
13. hifa_bandpass		Amplitude vs frequency (s
14. hifa_spwphaseup		Amplitude to frequency (a
15. hifa_gfluxscale		The plots below show amplitude v
16. hifa_timegaincal		to snow snow detailed prots for a
17. hif_applycal		. AND
18. hif_makeimlist		1 1
19. hif_makeimages		100
		g un
		1.0
		and any particular strategy and
		B. (
		Reference antenna (DA59) (show
		Amplitude vs frequency for the ref
		above to show detailed plots for D

PIPELINE

Weblog

EUROPEAN ARC ALMA Regional Centre || Allegro

WHY? :Solve for the frequency dependence Plots : in 'QA' (or 'calibration') directory / weblog '*bandpass.plots' & '*bandpass_smoothXXXX.plots'

Calibration - Bandpass (2)

MANUAL

- bandpass creates antenna based solutions for amp & phase with Freq.
 - caltable table that will hold solutions
 - combine scan all data needs to be combined for each SPW
 - bandtype B for bandpass. BP for B-poly if you bandpass is noisy - use with care

PIPELINE

Weblog

WHY? :Solve for the frequency dependence Plots : in 'QA' (or 'calibration') directory / weblog '*bandpass.plots' & '*bandpass_smoothXXXX.plots'

Calibration - Bandpass (2)

Calibration - Flux

• The Source

- Solar System Object (SSO) caution too resolved is an issue
- QSO known/monitored source
- The Steps
 - 1 use 'setjy' to set the flux scaling to refer to later
 - GC1- phase up all sources required for flux scaling to solve for decorrelation flux cal, BP cal, gain cal (caution with resolved sources!!!)
 - GC2- apply the phase-up 'on-the-fly' and solve the amplitudes
 - 2 scale the amplitude gains according to the output flux of the

flux calibrator - bootstrapping !

Calibration - Flux (1)

MANUAL

SSO

setjy(vis = 'uid___A002_Xa44acb_Xadb.ms.split', field = '2', # Ceres spw = '0,1,2,3', standard = 'Butler-JPL-Horizons 2012')

QSO

```
setjy(vis = 'uid___A002_Xac5575_X19e.ms.split',
    standard = 'manual',
    field = 'J1751+0939',
    fluxdensity = [4.04889627574, 0, 0, 0],
    spix = -0.476483659328,
    reffreg = '226.451094779GHz')
```

- setjy sets the flux scaling for the flux calibrator source
- standard the model OR manual

PIPELINE

Weblog

WHY? :Setting the correct flux scale to use later Plots : in 'QA' directory / weblog

Calibration - Flux (1)

Calibration - Gains

• The Source

- QSO point source known amp and phase visibilities
- •What?
 - Short term phases
 - Long term amplitudes
 - ~Long term phases per visit to phase calibrator
- The steps
 - 1 'phase-up' to solve for decorrelation due to rapid phase
 changes cause be atmosphere *required to get the correct amplitudes
 - 2 Slow variation of amplitude with time solved with 'phaseup' solutions applied 'on-the-fly'

- 3 - Phase variations due to atmospheric changes are monitored by the gain calibrator and interpolated to the source

MANUAL

gaincal(vis = 'uid ___A002_Xac5575_X19e.ms.split', caltable = 'uid ___A002_Xac5575_X19e.ms.split.phase_int', field = '0,1,2', # J1751+0939,J1924+1540 - J1922+1530 solint = 'int', refant = 'DV10', gaintype = 'G', calmode = 'p', gaintable = 'uid ___A002_Xac5575_X19e.ms.split.bandpass')

- gaincal creates the antenna based phase solutions
 - field ALL calibrator sources
 - solint 'int' should be selected for best phase solutions
 - gaintable apply bandpass OTF

EUROPEAN ARC ALMA Regional Centre || Allegro

PIPELINE

1	14. hifa_spwphaseup
	15. hifa_gfluxscale
ł	16. hifa_timegaincal
į	17. hif_applycal
	18. hif_makeimlist
1	19. hif_makeimages

Weblog

WHY? :Correct for all phase variations in time Plots : in 'QA' directory / weblog '*split.phase_int.plots'

MANUAL

gaincal(vis = 'uid___A002_Xac5575_X19e.ms.split', caltable = 'uid___A002_Xac5575_X19e.ms.split.phase_int', field = '0,1,2', # J1751+0939,J1924+1540 - J1922+1530 solint = 'int', refant = 'DV10', gaintype = 'G', calmode = 'p', gaintable = 'uid___A002_Xac5575_X19e.ms.split.bandpass')

- gaincal creates the antenna based phase solutions
 - field ALL calibrator sources
 - solint 'int' should be selected for best phase solutions
 - gaintable apply bandpass OTF

EUROPEAN ARC ALMA Regional Centre || Allegro

PIPELINE

14.	hifa_spwphaseup
15.	hifa_gfluxscale
16.	hifa_timegaincal
17.	hif_applycal
18.	hif_makeimlist
19.	hif_makeimages

Weblog

If one (or more) of your calibrators is weak (HF data) this can be increased or multiple gain tables are required, be aware this could cause fluxes to have a larger uncertainty unless atmosphere is stable

~short baseline <1 km

Calibration - Gains (2) - amp 'inf'

MANUAL

```
gaincal(vis = 'uid___A002_Xac5575_X19e.ms.split',
    caltable = 'uid___A002_Xac5575_X19e.ms.split.ampli_inf',
    field = '0,1,2', # J1751+0939,J1924+1540 J1922+1530
    solint = 'inf',
    refant = 'DV10',
    gaintype = 'T',
    calmode = 'a',
    gaintable = ['uid___A002_Xac5575_X19e.ms.split.bandpass',
5_X19e.ms.split.phase_int'])
```

- gaincal creates the antenna based amp solutions
 - field ALL calibrator sources
 - solint 'inf' i.e. per scan/visit to the gain cal
 - gaintable apply bandpass AND the 'int' phase-up solutions OTF

PIPELINE

15. hifa_gfluxscale

16. hifa_timegaincal
17. hif_applycal
18. hif_makeimlist
19. hif_makeimages

Weblog

WHY? :Correct for slow amplitude variations in time Plots : in 'QA' directory / weblog '*split.ampli_int.plots' OR '*split.flux_inf.plots'

Calibration - Gains (2) - amp 'inf'

Solutions ONLY every visit to the gain calibrator

Calibration - Flux (2)

MANUAL

fluxscaleDict = fluxscale(vis = 'uid___A002_Xac5575_X19e.ms.split', caltable = 'uid___A002_Xac5575_X19e.ms.split.ampli_inf', fluxtable = 'uid___A002_Xac5575_X19e.ms.split.flux_inf', reference = '0') # J1751+0939

- fluxscale compares the input amplitude gain table and the model in setjy
 - caltable the long term amplitude gains previously solved
 - fluxtable the new output gain table with correct gains to scale fluxes
 - reference the source used with the setjy model earlier

PIPELINE

WHY? :Setting the correct gains for flux scaling Plots : in 'QA' directory / weblog '*split.flux_inf.plots' File : '*split.fluxscale'

Calibration - Flux (2)

MANUAL

fluxscaleDict = fluxscale(vis = 'uid A002 Xac5575 X19e.ms.split', caltable = 'uid A002 Xac5575 X19e.ms.split.ampli inf', fluxtable = 'uid A002 Xac5575 X19e.ms.split.flux inf', reference = '0') # J1751+0939

- **fluxscale compares the input** amplitude gain table and the model in setjy
 - caltable the long term amplitude gains previously solved
 - fluxtable the new output gain table with
 - reference -

If one (or more) of your calibrators is weak (HF data) the flux reported could 'appear' higher some SPWs in particular narrow ones - as amplitude errors can ONLY be positive - can also map other SPW solutions

Plots : in 'QA' directory webloa

"split.flux inf.plots' File (*split.fluxscale'

orrect gains to scale fluxes

uid____A002_Xb6a8c1_Xabca.ms 13. hifa_bandpass

PIPELINE

12.htf_setty

MANUAL

```
os.system('rm -rf uid___A002_Xa44acb_Xadb.ms.split.phase_inf')
gaincal(vis = 'uid___A002_Xa44acb_Xadb.ms.split',
    caltable = 'uid___A002_Xa44acb_Xadb.ms.split.phase_inf',
    field = '0,2,3', # J1733-1304,Ceres,J1832-2039
    solint = 'inf',
    refant = 'DA59',
    gaintype = 'G',
    calmode = 'p',
    gaintable = 'uid___A002_Xa44acb_Xadb.ms.split.bandpass_smooth20ch')
```

- gaincal creates the antenna based phase solutions
 - field ALL calibrator sources
 - solint 'inf' i.e. per scan/visit to the gain cal
 - gaintable apply bandpass

PIPELINE

16. hifa_timegaincal

17. hif_applycal

18. hif_makeimlist

19. hif_makeimages

16. Gain Calibration

This task creates gain solutions for each measuremen

Plots

- Phase vs time
- Phase structure
- Amplitude vs time

Diagnostic plots

o Phase vs time

Amplitude vs time

Weblog

Calibration - Gains (3) - phase 'inf' Recall - 'int' - integration time

~short baseline <1 km

Calibration - Gains (3) - phase 'inf' Recall - 'int'

Calibration - tables

Calibration - Application

MANUAL

```
for i in ['0', '2', '3']: # Bandpass, Ceres, J1832-2039
 applycal(vis = 'uid A002 Xa42f75 X83e.ms.split',
   field = str(i),
   gaintable = ['uid A002 Xa42f75 X83e.ms.split.bandpass smooth20ch',
     'uid A002 Xa42f75 X83e.ms.split.phase int',
       'uid A002 Xa42f75 X83e.ms.split.flux inf'],
   gainfield = ['', i, i],
   interp = 'linear,linear',
   calwt = T,
   flagbackup = F)
applycal(vis = 'uid___A002_Xa42f75_X83e.ms.split',
 field = '1, 4',
 'uid A002 Xa42f75 X83e.ms.split.phase inf',
 'uid A002 Xa42f75 X83e.ms.split.flux inf'],
 gainfield = ['', '0', '0'], # J1733-1304
 interp = 'linear,linear',
 calwt = T,
 flagbackup = F)
```

- applycal - applies the calibration tables

PIPELINE

17. hif_applycal

18. hif_makeimlist

19. hif_makeimages

Contents

- Applied calibrations
- Flagged data after calibration application
- Plots
 - Calibrated amplitude vs frequency
 - Calibrated phase vs frequency
 - Calibrated amplitude vs UV distance
 - Calibrated amplitude vs time
 - Calibrated phase vs time
 - (Corrected amplitude / model) vs anteni
 - (Corrected amplitude / model) vs UV dis
 - Science target: calibrated amplitude vs
 - Science target: calibrated phase vs freq
 - Science target: calibrated amplitude vs

Weblog

WHY? :Apply all required tables Plots : use plotms(), QA directory / weblog

Calibration - Application (1) MANUAL

for i in ['0', '2', '3']: # Bandpass, Ceres,J1832-2039
applycal(vis = 'uid___A002_Xa42f75_X83e.ms.split',
 field = str(i),
 gaintable = ['uid___A002_Xa42f75_X83e.ms.split.bandpass_smooth20ch',
 'uid___A002_Xa42f75_X83e.ms.split.phase_int',
 'uid___A002_Xa42f75_X83e.ms.split.flux_inf'],
 gainfield = ['', i, i],
 interp = 'linear,linear',
 calwt = T,
 flagbackup = F)

- applycal - applies the calibration tables

- gaintable order to apply, BP, phase, flux
- gainfield which field to use in the gaintable
- interp the interpolation mode to use

Calibration - Application (1) MANUAL for i in ['0', '2', '3' # Bandpass, Ceres, J1832-2039 field - these are the bandpass, flux cal, check source applycal(vis = 'uid A002 Xa42f75 X83e.ms.split', field = str(i), **ORDER !! - which field is** gaintable = ['uid A002 Xa42f75 X83e.ms.split.bandpass smooth20ch' 'uid A002 Xa42f75 X83e.ms.split.phale int' used from which table 'uid A002 Xa42f75 X83e.ms.split.flux inf'], gainfield = ['', i, i],interp = 'linear,linear', calwt = T, 💻 calwt - true for correct weight for CASA >4.3.1, flagbackup = F)for correct ACA + 12m merging

- applycal applies the calibration tables
 - gaintable order to apply, BP, phase, flux
 - gainfield which field to use in the gaintable
 - interp the interpolation mode to use

For all calibrators EXCEPT phase cal, the 'int' phase solution is applied from itself

Calibration - Application (2) MANUAL

- applycal - apply the calibration tables - to the science target

applycal(vis = 'uid___A002_Xa42f75_X83e.ms.split', field = '1,4', gaintable = ['uid___A002_Xa42f75_X83e.ms.split.bandpass_smooth20ch', 'uid___A002_Xa42f75_X83e.ms.split.phase_inf', 'uid___A002_Xa42f75_X83e.ms.split.flux_inf'], gainfield = ['', '1', '1'], # J1733-1304 interp = 'linear,linear', calwt = T, flagbackup = F)

Calibration - Application (2) MANUAL

- applycal - apply the calibration tables - to the science target

applycal(vis = 'uid___A002_Xa42f75_X83e.ms.split', field = '1,4', _______ field - gain cal & science target gaintable = ['uid___A002_Xa42f75_X83e.ms.split.bandpass_smooth20ch', 'uid___A002_Xa42f75_X83e.ms.split.pha e_inf'] - inf phase solution - can only interpolate phases 'uid___A002_Xa42f75_X83e.ms.split.flux_inf'], gainfield = ['', '1', '1'], # J1733-1304 gainfield - solutions for field '1' are applied to BOTH '1' and '4' interp = 'linear,linear', calwt = T, flagbackup = F)

EUROPEAN ARC ALMA Regional Centre || Allegro The gaincal and the science target have the solutions from the gaincal applied to them

Calibration - Application (2)

Phase vs. Time

Calibration - The data (amp)

Recall - 'raw' data

Calibration - The data (amp)

Recall - 'raw' data

Recall - 'raw' data - all baselines - phases 'everywhere'

ALMA Regional Centre || Allegro

Recall - 'raw' data - single baseline - non-zero calibrator phases

Recall - corrected data - single baseline - calibrators ~ zero phase

Recall - corrected data - ALL baseline - calibrators ~ zero phase

Recall - corrected data - ALL baseline - calibrators ~ zero phase

Recall - corrected data - ALL baseline - calibrators ~ zero phase

Calibration - caveats

- Solar system object as flux cal more steps
- Narrow and wideband mixed (e.g. 2GHz and <250MHz) - SPW mapping
- Low SNR issues on gain cals SPW combination
- Lots of narrow SPW Bandwidth Switching

Calibration - COMPLETE!!

Now ready for imaging

Calibration - Gains (1) SSO

MANUAL

PIPELINE

14. hifa_spwphaseup
15. hifa_gfluxscale
16. hifa_timegaincal
17. hif_applycal
18. hif_makeimlist
19. hif_makeimages

WHY? :Correct for all phase variations in time - short baselines - SSO is unresolved - 2 STEPS!! Plots : in 'QA' directory / weblog '*split.phase_short_int.plots'

Calibration - Gains (1) SSO

ONLY baselines <200m used to bootstrap flux value to other calibrators - i.e. assume a point source such that a phase-up can be accomplished (i.e. phase_short) Plots: QA directory

Calibration - Gains (2) SSO

MANUAL

```
os.system('rm -rf uid___A002_Xa44acb_Xadb.ms.split.ampli_short_inf')
gaincal(vis = 'uid___A002_Xa44acb_Xadb.ms.split',
    caltable = 'uid___A002_Xa44acb_Xadb.ms.split.ampli_short_inf',
    field = '0,2,3', # J1733-1304,Ceres,J1832-2039
    selectdata = T,
    solint = 'inf',
    refant = 'DA59',
    gaintype = 'T',
    calmode = 'a',
    gaintable = ['uid___A002_Xa44acb_Xadb.ms.split.bandpass_smooth20ch',
uid___A002_Xa44acb_Xadb.ms.split.phase_short_int'])
```

- gaincal creates the antenna based amp solutions
 - field ALL calibrator sources
 - solint 'inf' i.e. per scan/visit to the gain cal
 - gaintable apply bandpass AND the 'int' SHORT phase-up solutions OTF

EUROPEAN ARC ALMA Regional Centre || Allegro

PIPELINE

15. hifa_gfluxscale

16. hifa_timegaincal

17. hif_applycal

18. hif_makeimlist

19. hif_makeimages

WHY? :Correct for slow amplitude variations in time Plots : In some cases in 'QA' directory / weblog '*split.ampli_short_int.plots'

Calibration - Flux (2) SSO

MANUAL

fluxscaleDict = fluxscale(vis = 'uid___A002_Xa44acb_Xadb.ms.split', caltable = 'uid___A002_Xa44acb_Xadb.ms.split.ampli_short_inf', fluxtable = 'uid___A002_Xa44acb_Xadb.ms.split.flux_short_inf', reference = '2') # Ceres

```
f = open('uid A002 Xa44acb Xadb.ms.split.fluxscale')
  fc = f.readlines()
  f.close()
  for phaseCalName in ['J1733-1304']:
    for i in range(len(fc)):
      if fc[i].find('Flux density for '+phaseCalName) != -1 and re.search('in Sp\
*?\))? is: [0-9]+\.[0-9]+', fc[i], re.DOTALL|re.IGNORECASE) != None:
        line = (re.search('in SpW=[0-9]+(?: \(.*?\))? is: [0-9]+\.[0-9]+', fc[i],
IGNORECASE)).group(0)
        spwId = (line.split('='))[1].split()[0]
        flux = float((line.split(':'))[1].split()[0])
        setjy(vis = 'uid A002 Xa44acb Xadb.ms.split',
         field = phaseCalName.replace(';','*;').split(';')[0],
          spw = spwId,
          standard = 'manual',
          fluxdensity = [flux, 0, 0, 0])
```


PIPELINE

EUROPEAN ARC ALMA Regional Centre || Allegro

WHY? :Setting the correct gains for flux scaling - then recalibrate all baselines with bootstrapped flux Plots : in 'QA' directory / weblog - '*split.flux_inf.plots'

Calibration - Flux (2) SSO

MANUAL

fluxscaleDict = fluxscale(vis = 'uid A002 Xa44acb Xadb.ms.split', Flux Calibrator Model Comp caltable = 'uid A002 Xa44acb Xadb.ms.split.ampli short inf', Antenna selection used for flux transfer to the fluxtable = 'uid A002 Xa44acb Xadb.ms.split.flux short inf', A002 Xb62a5b X333a.ms reference = '2') # Ceres 18 hif makeiml 19. htf. makeimage f = open('uid A002 Xa44acb Xadb.ms.split.fluxscale') fc = f.readlines() Baseband 1 f.close() ALMA Rand 6 Amp vs. uvdist for all antennas. Color coded I for phaseCalName in ['J1733-1304']: Flux calibrator fields: Pallas. for i in range(len(fc)): if fc[i].find('Flux density for '+phaseCalName) != -1 and re.search('in Sp\ *?\))? is: [0-9]+\.[0-9]+', fc[i], re.DOTALL|re.IGNORECASE) != None: line = (re.search('in SpW=[0-9]+(?: \(.*?\))? is: [0-9]+\.[0-9]+', fc[i], IGNORECASE)).group(0) spwId = (line.split('='))[1].split()[0] loop - searches the *fluxscale flux = float((line.split(':'))[1].split()[0]) setjy(vis = 'uid A002 Xa44acb Xadb.ms.split',

field = phaseCalName.replace(';','*;').split(';')[0], spw = spwId, standard = 'manual', fluxdensity = [flux, 0, 0, 0])

file for the flux of another calibrator - gain cal

PIPELINE

WHY? :Setting the correct gains for flux scaling - then recalibrate all baselines with bootstrapped flux Plots : in 'QA' directory / weblog - '*split.flux inf.plots'

Calibration - Flux (2) SSO

MANUAL

fluxscaleDict = fluxscale(vis = 'uid A002 Xa44acb Xadb.ms.split', Flux Calibrator Model Com caltable = 'uid A002 Xa44acb Xadb.ms.split.ampli short inf', Interna selection used for flux transfer to the fluxtable = 'uid A002 Xa44acb Xadb.ms.split.flux short inf', A002 Xb62a5b X333a.ms reference = '2') # Ceres 18 hif makeimi 19. htf. makeimage f = open('uid A002 Xa44acb Xadb.ms.split.fluxscale') fc = f.readlines() Baseband 1 f.close() ALMA Rand 6 Amp vs. uvdist for all antennas. Color coded for phaseCalName in ['J1733-1304']: Flux calibrator fields: Pallas. for i in range(len(fc)): if fc[i].find('Flux density for '+phaseCalName) != -1 and re.search('in Sp\ *?\))? is: [0-9]+\.[0-9]+', fc[i], re.DOTALL|re.IGNORECASE) != None: line = (re.search('in SpW=[0-9]+(?: \(.*?\))? is: [0-9]+\.[0-9]+', fc[i], IGNORECASE)).group(0) spwId = (line.split('='))[1].split()[0] loop - searches the *fluxscale flux = float((line.split(':'))[1].split()[0]) setjy(vis = 'uid A002 Xa44acb Xadb.ms.split', file for the flux of another field = phaseCalName.replace(';', '*;').split(';')[0], spw = spwId, calibrator - gain cal standard = 'manual',

```
fluxdensity = [flux,0,0,0])
```

setjy - called again to set gain cal bootstrapped flux

EUROPEAN ARC ALMA Regional Centre || Allegro WHY? :Setting the correct gains for flux scaling - then recalibrate all baselines with bootstrapped flux Plots : in 'QA' directory / weblog - '*split.flux_inf.plots'

PIPELINE

Calibration - Redo-Gains/Flux - SSO

MANUAL

gaincal(vis = 'uid A002 Xa44acb Xadb.ms.split', caltable = 'uid A002 Xa44acb Xadb.ms.split.phase int', field = '0,2,3', # J1733-1304, Ceres, J1832-2039 solint = 'int', refant = 'DA59', gaintype = 'G',calmode = 'p',gaintable = 'uid A002 Xa44acb Xadb.ms.split.bandpass smooth20ch')

gaincal - creates the antenna based phase solutions - ALL baselines

```
gaincal(vis = 'uid A002 Xa44acb Xadb.ms.split',
   caltable = 'uid A002 Xa44acb Xadb.ms.split.flux inf',
   field = '0,2,3', # J1733-1304, Ceres, J1832-2039
   solint = 'inf',
   refant = 'DA59',
   gaintype = 'T',
   calmode = 'a',
   gaintable = ['uid A002 Xa44acb Xadb.ms.split.bandpass smooth20ch',
'uid A002 Xa44acb Xadb.ms.split.phase int'])
```

- gaincal - creates the antenna based amp solutions - ALL baselines

EUROPEAN ARC ALMA Regional Centre || Allegro

PIPELINE Flux Calibrator Model Comba Antenna selection used for flux transfer to the A002 Xb62a5b X333a.ms 19. htf. makeimage

18 hif makein

Baseband 1 ALMA Rand 6 Amp vs. uvdist for all antennas. Color coded b Flux calibrator fields: Pallas.