7. TARAO STORMAR STAR & SADAT

ALMA Data Reduction Workshop

Presented by Allegro Fellows

Aida Ahmadi Alex Hygate Andrés Pérez-Sánchez Katharina Immer Ashley Bemis

Outline

THERE AND AND AND AND A READER

This hands-on workshop will follow the following topics:

- 1. Inspection of data
- 2. First look at imaging
 - Break -
- 3. Self-calibration
- 4. Continuum subtraction & line imaging
- 5. Analysis tools

To follow along with the presentation slides:

https://www.alma-allegro.nl/alma-data-reduction-training-day-nov-2021/

Mostly based on 'First Look' CASA Guides: <u>https://casaguides.nrao.edu/index.php?title=ALMAguides</u>

Let's get started

+ ARIO REPART AND A Short

- We will be using the TW Hya dataset that is used in most CASA Guides
- If you are using the Allegro computers:
 - Go to the following path:
 - cd /allegro5/allegro/home/your_username/open_2021_Training
 - Copy over the data to your dedicated folder:
 - cp -RL archive/* analysis/your_username/.
 - Go to your analysis folder:
 - cd analysis/your_username/TWHya_Tutorial
 - Start CASA:
 - tcsh: nice +10 /data1/allegro/bin/casapy-570
 - bash: nice -n 10 /data1/allegro/bin/casapy-570
- Otherwise:

ALMA Regional Centre || Allearo

- Download the data from <u>https://bit.ly/AllegroDR21-data</u>
- Install CASA from <u>https://casa.nrao.edu/casa_obtaining.shtml</u>

Starting CASA will open a logger (and a log file):

CASA Version CASALITH 6.4.0.16
CASA Version CASALITH 6.4.0.16
Telemetry log file: /Users/aida/.casa/casastats-6.4.0.16-2c624e4f02613c546b-20211126-153135.log
Checking telemetry submission interval
Creating a new telemetry time stamp file./Users/aida/.casa/telemetry-2c624e4f02613c546b.stamp
Telemetry submit interval not reached. Not submitting data.
Next telemetry data submission in: 6 days, 23:59:59.999959
optional configuration file config.py not found, continuing CASA startup without it
Checking Measures tables in data repository sub-directory /Applications/CASA.app/Contents/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/ca
IERSeop2000 (version date, last date in table (UTC)): 2021/10/06/15:00, 2021/09/05/00:00:00
IERSeop97 (version date, last date in table (UTC)): 2021/10/06/15:00, 2021/09/05/00:00:00
IERSpredict (version date, last date in table (UTC)): 2021/10/10/15:00, 2022/01/08/00:00:00
TAI_UTC (version date, last date in table (UTC)): 2021/10/07/15:00, 2017/01/00:00:00

And the terminal prompt:

optional configuration file config.py not found, continuing CASA startup without it

IPython 7.15.0 -- An enhanced Interactive Python.

Using matplotlib backend: MacOSX Telemetry initialized. Telemetry will send anonymized usage statistics to NRAO. You can disable telemetry by adding the following line to the config.py file in your rcdir (e.g. ~/.casa/config.py): telemetry_enabled = False --> CrashReporter initialized. CASA 6.4.0.16 -- Common Astronomy Software Applications [6.4.0.16]

CASA <1>:

T TAR 20 STORAGE AND A SHOW

List of available tasks

tasklist() -> Get an overview of available tasks, organized by category (removed in CASA 6) taskhelp -> A more exhaustive list of tasks with descriptions

More information about the tasks: https://casa.nrao.edu/casadocs/casa-5.0.0/global-task-list

<u>Getting help on a task</u> help <taskname>

Executing a task

Interactively:

tget <taskname> -> set the task

inp -> determine the input parameters needed for the task that was set

(set individual parameters using a Python <parameter>=<value> syntax)

go -> run the task

Programmatically:

```
taskname(parameter1=", parameter2=", ...)
```


T. THERE AND AND AND A STOCK

Parameters

grey: parameter has sub-parameters green: sub-parameters

red: invalid value

blue: parameter altered from its default

Data selection syntax

spw='0:5~30;40~55,1:10~25;45~58,2'

<u>Running scripts</u> execfile('script_name.py')

ASA <39>: in	p tclean				
tclean R	adio Inter	ferometric	Image	Reconstruction	
is		= 'data/si	is14_tv	whya_calibrated	flagged.m

selectdata	= True	e
field	= 11	
spw	= 11	
timerange	= 11	
uvrange	= 11	
antenna	= 11	
scan	= 11	
observation	= 11	
intent	= 11	
datacolumn	= 11	
imagename	= '''	
imsize	= [100	9]
cell	= []	
phasecenter	= '''	
stokes	= 'I'	
projection	= 'SIM	11
startmodel	= 1.1	
specmode	= 'mfs	5 '
reffreq	= 11	
gridder	= 'sta	andard'
vptable	= 11	
pblimit	= 0.2	
deconvolver	= 'hog	bom'
restoration	= True	9
restoringbeam	= []	
pbcor	= Fals	se
outlierfile	= ''	
weighting	= 'na1	1 C
niter	= 0	
usemask	= 'use	er'
mask	= 11	
pbmask	= 0.0	
fastnoise	= True	9
restart	= True	9
savemodel	= 'nor	ne'
calcres	= True	9
calcpsf	= True	9
psfcutoff	= 0.35	5
parallel	= Fals	se

DIG	red_i ragged.ms	
#	Name of input visibility file(s)	
#	Enable data selection parameters	
#	field(s) to select	
#	spw(s)/channels to select	
#	Range of time to select from data	
#	Select data within uvrange	
#	Select data based on antenna/baseline	
#	Scan number range	
#	Observation ID range	
#	Scan Intent(s)	
#	Data column to image(data,corrected)	
#	Pre-name of output images	Common Astronomy
#	Number of pixels	common histronomy
#	Cell size	Software Applications
#	Phase center of the image	ooremare / applications
#	Stokes Planes to make	
#	Coordinate projection	
#	Name of starting model image	
#	Spectral definition mode (mfs, cube, cubedata, cubesource)	
#	Reference frequency	
#	Gridding options (standard, wproject, widefield, mosaic, awproject	ct)
#	Name of Voltage Pattern table	
#	PB gain level at which to cut off normalizations	
#	Minor cycle algorithm (hogbom, clark, multiscale, mtmfs, mem, clarkst	okes)
#	Do restoration steps (or not)	
#	Restoring beam shape to use. Default is the PSF main lobe	
#	Apply PB correction on the output restored image	
#	Name of outlier-field image definitions	
#	Weighting scheme (natural, uniform, briggs, briggsabs[experimental], briggsbwtaper[experimental])
#	Maximum number of iterations	
#	Type of mask(s) for deconvolution: user, pb, or auto-multithresh	
#	Mask (a list of image name(s) or region file(s) or region string	(s))
#	primary beam mask	
#	True: use the faster (old) noise calculation. False: use the new	improved noise calculations
#	True : Re-use existing images. False : Increment imagename	
#	Options to save model visibilities (none, virtual, modelcolumn)	
#	Calculate initial residual image	
#	Calculate PSF	
#	All pixels in the main lobe of the PSF above psfcutoff are used	to fit a Gaussian beam (the Clean beam)
#	Run major cycles in parallel	

THAT A STORAGE AND A SHORE

Measurement sets:

• Measurement sets (ms) are directories

									Commor	1 Astror	າomy
ASDM_STATION/ CALDEVICE/	HISTORY/ OBSERVATION/	SOURCE/ SPECTRAL WINDOW/	table.dat* table.f1*	table.f14* table.f15*	table.f19* table.f2*	table.f22* table.f22 TSM1*	table.f5* table.f6*	table.lock*			
ASDM_RECEIVER/	FLAG_CMD/	SORTED_TABLE/	WEATHER/	table.f13*	table.f18*	table.f21_TSM1*	table.f4*	table.info*			
ASDM_CALWVR/	FIELD/	PROCESSOR/	SYSPOWER/	table.f12*	table.f17_TSM1*	table.f21*	table.f3*	table.f9*			
ASDM_ANTENNA/	FEED/	POLARIZATION/	SYSCAL/	table.f11*	table.f17*	table.f20_TSM0*	table.f23_TSM1*	table.f8*			
ANTENNA/	DATA_DESCRIPTION/	POINTING/	STATE/	table.f10*	table.f16*	table.f20*	table.f23*	table.f7*			
CASA <1>: 15 S1S1	<pre>4_twhya_calibrated</pre>	_flagged.ms/									

- To copy or remove them you need to use the recursive option
 - cp -r this_data.ms that_data.ms
- Safest way to remove a dataset in CASA:
 - rmtables('this_data.ms')
 - Alternatively:
 - rm -rf this_data.ms
 - Or if within a script:
 - os.system('rm -r this_data.ms')

Software Applications

1. Data Inspection

T. ARAO STOPPEN AND A SADA

Main Tasks for Data Inspection:

- listobs: lists the contents of measurement set
- plotants: plot the location of antennas
- plotms: inspect/flag data interactively

listobs: lists the contents of measurement set

THERE AN AND THE AND A SHOW

Can select a subset of the measurement set

ALMA Regional Centre || Allegro

listobs

7. TARA AN ANTA ALTA A TANK

listobs(vis='sis14_twhya_calibrated_flagged.ms')

sequence of observations

****** ##### Begin Task: listobs ##### listobs(vis='sis14 twhva calibrated flagged.ms'. selectdata=True. spw=", field=", antenna=", uvrange=", timerange=", correlation=", scan=", intent=", feed=", array=", observation=", verbose=" MeasurementSet Name: /Users/aida/Documents/Work/Leiden/Allegro/Events/202111_Data_Reduction_Day/data/sis14_twhya_calibrated_flagged.ms MS Version 2 _____ Observer: cqi Project: uid://A002/X327408/X6f Observation: ALMA Computing scan and subscan properties... Data records: 80563 Total elapsed time = 5647.68 seconds Observed from 19-Nov-2012/07:36:57.0 to 19-Nov-2012/09:11:04.7 (UTC) ObservationID = 0 ArravID = 0 Date Timerange (UTC) Scan FldId FieldName nRows Spwids Average Interval(s) ScanIntent 4200 [0] [6.05] [CALIBRATE BANDPASS#ON SOURCE.CALIBRATE PHASE#ON SOURCE.CALIBRATE WVR#ON SOURCE] 19-Nov-2012/07:36:57.0 - 07:39:13.1 4 0 J0522-364 3800 [0] [6.05] [CALIBRATE AMPLI#ON SOURCE, CALIBRATE PHASE#ON SOURCE, CALIBRATE WVR#ON SOURCE] 07:44:45.2 - 07:47:01.2 7 2 Ceres 07:52:42.0 - 07:53:47.6 10 3 J1037-295 1900 [0] [6.05] [CALIBRATE_PHASE#ON_SOURCE,CALIBRATE_WVR#ON_SOURCE] 8514 [0] [6.05] [OBSERVE_TARGET#ON_SOURCE] 07:56:23.5 - 08:02:11.3 12 5 TW Hva 1900 [0] [6.05] [CALIBRATE PHASE#ON SOURCE, CALIBRATE WVR#ON SOURCE] 08:04:36.3 - 08:05:41.9 14 3 J1037-295 08:08:09.6 - 08:13:57.3 16 5 TW Hva 10360 [0] [6.05] [OBSERVE_TARGET#ON_SOURCE] 3 J1037-295 2100 [0] [6.05] [CALIBRATE PHASE#ON SOURCE.CALIBRATE WVR#ON SOURCE] 08:16:20.6 - 08:17:26.2 18 08:19:53.9 - 08:25:41.7 20 5 TW Hya 10321 [0] [6.05] [OBSERVE_TARGET#ON_SOURCE] 2100 [0] [6.05] [CALIBRATE PHASE#ON SOURCE.CALIBRATE WVR#ON SOURCE] 08:28:17.1 - 08:29:22.6 22 3 J1037-295 08:32:00.5 - 08:37:48.2 24 5 TW Hva 10324 [0] [6.05] [OBSERVE TARGET#ON SOURCE] 08:40:11.9 - 08:41:17.4 26 3 J1037-295 2100 [0] [6.05] [CALIBRATE PHASE#ON SOURCE.CALIBRATE WVR#ON SOURCE] 08:43:45.6 - 08:49:33.4 28 5 TW Hya 9462 [0] [6.05] [OBSERVE TARGET#ON SOURCE] 08:51:57.1 - 08:53:02.6 30 1900 [0] [6.05] [CALIBRATE_PHASE#ON_SOURCE,CALIBRATE_WVR#ON_SOURCE] 3 J1037-295 3402 [0] [6.05] [CALIBRATE BANDPASS#ON SOURCE.CALIBRATE PHASE#ON SOURCE.CALIBRATE WVR#ON SOURCE 08:58:12.0 - 09:00:28.1 33 6 3c279 3 J1037-295 1900 [0] [6.05] [CALIBRATE PHASE#ON SOURCE, CALIBRATE WVR#ON SOURCE] 09:01:35.7 - 09:02:41.2 34 4180 [0] [6.05] [OBSERVE_TARGET#ON SOURCE] 09:05:15.6 - 09:07:31.6 36 5 TW Hva 09:09:59.1 - 09:11:04.7 38 3 J1037-295 2100 [0] [6.05] [CALIBRATE PHASE#ON SOURCE, CALIBRATE WVR#ON SOURCE] (nRows = Total number of rows per scan)

ALMA Regional Centre || Allegro

EUROPEAN ARC

listobs

listobs(vis='sis14_twhya_calibrated_flagged.ms')

List of fields & spectral windows

Fiel	ds: 5

ID	Code Name		RA		Decl	Epoch	SrcId	nRows	6				
0	none J0522-3	364	05	:22:57.98	4648 -30	6.27.30.85	128 J200	0 0	4200				
2	none Ceres		06:1	0:15.9505	90 +23.	22.06.906	68 J2000	2	3800				
3	none J1037-2	295	10	:37:16.07	9736 -29	9.34.02.81	316 J200	03	16000				
5	none TW Hya	1	11:	01:51.796	000 -34	.42.17.366	600 J2000) 4	53161				
6	none 3c279		12:5	6:11.1665	76 -05.4	47.21.5246	4 J2000	5	3402				
Spe	ctral Windows	s: (1 u	unique	e spectral	window	vs and 1 u	nique po	larizatio	n setups)				
Sp	wID Name	-		#Chans	Frame	Ch0(MH	lz) Chan	Wid(kHz) TotBW(kHz	2) CtrFreq(MHz) Bl	BC Num	Corrs	
0	ALMA_RB_0	07#BE	3_2#S	W-01#FUI	L_RES	384 TO	DPO 372	533.086	610.352	234375.0 372649	.9688	2 XX	YY
Sou	rces: 5												
ID	Name	Sp	wid Re	estFreq(M	Hz) Sy	sVel(km/s)					An	tennas
0	J0522-364	Ó	-	-) Nam
1	Ceres	0	-	-								1	DA4
2	J1037-295	0	-	-								2	DA4
3	TW Hya	0	-	-								3	DA4
4	3c279	0	-	-								4	DA4

Antenna names & positions

Ante	ennas:	21:									
ID	Name	Station	Diam.	Long.	Lat.	Off	set from an	ray center (m	i)	ITRF Geocentric coordinates (m)	
					East	North	Elevatio	n x	У	Z	
1	DA42	A050	12.0 m	-067.45.16.2	-22.53.29	.3	43.0352	-744.9713	21.6702	2225079.880016 -5440041.377534 -2481724.598031	
2	DA44	A068	12.0 m	-067.45.20.6	-22.53.25	.7	-82.4232	-631.7828	23.5810	2224981.097784 -5440131.250387 -2481621.066374	
3	DA45	A070	12.0 m	-067.45.11.9	-22.53.29.	.3	166.1833	-743.4934	19.8811	2225193.450167 -5439993.764157 -2481722.540534	
4	DA46	A067	12.0 m	-067.45.12.7	-22.53.27	.2	142.4097	-678.7318	20.1280	2225181.070532 -5440026.290790 -2481662.975103	
5	DA48	A046	12.0 m	-067.45.17.0	-22.53.29	.3	21.4267	-742.7987	21.6757	2225060.202580 -5440050.344436 -2481722.598651	
6	DA49	A029	12.0 m	-067.45.18.2	-22.53.25	.8	-12.9134	-636.4552	22.1350	2225044.239583 -5440102.022535 -2481624.808405	
7	DA50	A045	12.0 m	-067.45.17.9	-22.53.30	.1	-5.4183	-767.4398	22.6034	2225032.051652 -5440052.426015 -2481745.660003	
9	DV02	A077	12.0 m	-067.45.10.1	-22.53.25.	.9	217.6299	-637.5333	15.8376	2225255.259272 -5440008.987869 -2481623.352052	
11	DV05	A082	12.0 m	-067.45.08.3	-22.53.29	.2	269.0433	-740.9521	15.7832	2225287.593766 -5439952.243679 -2481718.605314	
12	DV06	A037	12.0 m	-067.45.17.5	-22.53.28	8.8	6.7403	-727.3003	21.2086	2225048.729287 -5440061.085777 -2481708.139136	
14	DV08	A021	12.0 m	-067.45.17.2	2 -22.53.27	.0	14.3196	-672.8108	21.3420	2225063.814715 -5440077.948261 -2481657.992572	
15	DV10	A071	12.0 m	-067.45.19.9	-22.53.23	3.5	-60.7887	-563.2541	23.3799	2225011.141945 -5440147.560932 -2481557.855663	
16	DV13	A072	12.0 m	-067.45.12.6	6 -22.53.24	l.0	147.1742	-580.5887	18.1825	5 2225199.254375 -5440058.161494 -2481571.803699	J
17	DV15	A074	12.0 m	-067.45.12.1	-22.53.32	2.0	161.8159	-828.6196	18.7688	2225176.483514 -5439963.820451 -2481800.529842	1
18	DV16	A069	12.0 m	-067.45.21.3	3 -22.53.30).2	-101.4797	-770.1047	23.2972	2 2224942.993176 -5440088.421459 -2481748.384855	í
19	DV17	A138	12.0 m	-067.45.17.	-22.53.34	.4	19.1461	-901.2603	26.0137	2225036.269025 -5439997.853009 -2481870.267607	
20	DV18	A053	12.0 m	-067.45.17.3	3 -22.53.31	.2	12.5939	-802.9941	21.5281	2225043.111690 -5440031.889497 -2481777.995870	
21	DV19	A008	12.0 m	-067.45.15.4	-22.53.26	6.8	67.5592	-667.6872	20.9574	2225113.709955 -5440059.310545 -2481653.122797	
22	DV20	A020	12.0 m	-067.45.17.8	3 -22.53.28	3.0	-2.9649	-703.4389	21.6629	2225043.419055 -5440073.737929 -2481686.333574	
24	DV22	A011	12.0 m	-067.45.14.4	-22.53.28	.4	95.9131	-716.5005	21.0898	2225132.810230 -5440031.115405 -2481698.143589	
25	DV23	A007	12.0 m	-067.45.15.1	-22.53.27	.3	74.0152	-681.2926	21.3231	2225117.809276 -5440052.280005 -2481665.799049	
Task	listob	s comple	ete. Starl	time: 2021-	11-29 22:42	2:19.11	3889 End	time: 2021-11-	-29 22:42:	19.209607	
####	## End	Task: lis	tobs	#####							
####	######	#######	########	*******	########						
####	######	#######	########	*##########	########						

Plotant: plot the location of antennas

- THE AD STORE THE AT STREET

plotants(vis='sis14_twhya_calibrated_flagged.ms', showgui=True, logpos=True)

plotms: inspect/flag data interactively

7. TARAO STORMAR ARTA & SMORTH

plotms - get familiar with your data

plotms(vis='sis14_twhya_calibrated_flagged.ms', xaxis='time'. vaxis='amp'. avgchannel='10000', avgspw=False, avgscan=False, coloraxis="field", showgui=True)

EUROPEAN ARC

ALMA Regional Centre || Allegro

Plotms - V vs U

THE LO STOP THE HE AND A SHOWER

```
plotms(
vis='sis14_twhya_calibrated_flagged.ms',
xaxis='u',
yaxis='v',
avgchannel='10000',
avgspw=False,
avgtime='1e9',
avgscan=False,
coloraxis="field",
showgui=True)
```


7. WAR 20 STOR AND AND A STORE

```
vis='sis14_twhya_calibrated_flagged.ms',
xaxis='UVdist',
yaxis='amp',
avgchannel='10000',
avgspw=False,
avgtime='1e9',
avgscan=False,
coloraxis="field",
iteraxis = "field",
showgui=True)
```


+ TARA AND ALTA AND A Show

```
vis='sis14_twhya_calibrated_flagged.ms',
xaxis='UVdist',
yaxis='amp',
avgchannel='10000',
avgspw=False,
avgtime='1e9',
avgscan=False,
coloraxis="field",
iteraxis = "field",
showgui=True)
```


T. TATA AN ANTAL ANTAL A TIMON

```
vis='sis14_twhya_calibrated_flagged.ms',
xaxis='UVdist',
yaxis='amp',
avgchannel='10000',
avgspw=False,
avgtime='1e9',
avgscan=False,
coloraxis="field",
iteraxis = "field",
showgui=True)
```


TATALO STOPPEN AND A STOPPEN

```
vis='sis14_twhya_calibrated_flagged.ms',
xaxis='UVdist',
yaxis='amp',
avgchannel='10000',
avgspw=False,
avgtime='1e9',
avgscan=False,
coloraxis="field",
iteraxis = "field",
showgui=True)
```


Plotms - Amp vs Frequency

7. THERE AN ARTICLE AND A STREET

plotms(

vis='sis14_twhya_calibrated_flagged.ms', xaxis='freq', yaxis='amp', field = 'J1037-295', avgchannel='10000', avgspw=False, avgtime='1e9', avgscan=False, coloraxis="field", showgui=True)

Plotms - Amp vs Time

T. THERE AN ARCAN AND A STREAM

plotms(

vis='sis14_twhya_calibrated_flagged.ms', xaxis='time', yaxis='amp', field = 'J1037-295', avgchannel='10000', avgspw=False, avgtime='1e9', avgscan=False, coloraxis="field", showgui=True)

Plotms - Phase vs Frequency

T. THERE AN ARCAN AND A STREET

plotms(

vis='sis14_twhya_calibrated_flagged.ms', xaxis='freq', yaxis='phase', field = 'J1037-295', avgchannel='10000', avgspw=False, avgtime='1e9', avgscan=False, coloraxis="field", showgui=True)

Plotms - Phase vs Time

T. TARA A TARA ATA A TARA

plotms(

vis='sis14_twhya_calibrated_flagged.ms', xaxis='time', yaxis='phase', field = 'J1037-295', avgchannel='10000', avgspw=False, avgtime='1e9', avgscan=False, coloraxis="field", showgui=True)

Plotms - Amp vs Frequency

T TARA A TARA AND A TARA

```
plotms(
vis='sis14_twhya_calibrated_flagged.ms',
xaxis='freg',
yaxis='amp',
field = 'TW Hya',
avgspw=False,
avgtime='1e9',
avgscan=True,
coloraxis="spw",
showgui=True)
```


Plotms - Amp vs Channel

```
plotms(
vis='sis14_twhya_calibrated_flagged.ms',
xaxis='channel',
yaxis='amp',
field = 'TW Hya',
avgspw=False,
avgtime='1e9',
avgscan=True,
coloraxis="spw",
showgui=True)
                         Optional:
                         avgchannel='10'
```

UROPEAN ARC

ALMA Regional Centre || Allegro

Determining line-free channels

T. TAR 20 STORAGE AND A S MONT

Two common methods:

- 1) a channel vs. amplitude plot of the visibilities
- Here we see channels 0-239 and 281-383 are free of lines and can be used to create the continuum (shown later)

Determining line-free channels

T. TAR 20 STORAGE STRATE A STRONG

Two common methods:

2) a dirty image of the cube (tclean with niter=0)

Or better yet, if available: the products cubes from the pipeline

Better statistical tools

T TARA A TO ALTA HE WAR A TO DO A

For sources that are extremely rich in lines better statistical tools are needed to determine the continuum level. Two options:

- 1. **STATCONT**: <u>https://hera.ph1.uni-koeln.de/~sanchez/statcont</u>
 - Can produce continuum fits files and continuum-subtracted line cubes. It can also handle single spectra in ASCII format.
 - See upcoming I-TRAIN (#11) on Dec. 10:

https://almascience.eso.org/tools/eu-arc-network/i-train

2. Lumberjack: CASA task that determines line-free channels: <u>https://github.com/adam-avison/LumberJack</u>

MA Regional Centre || Allegro

Imaging parameters

- ARAO ARCONTRACTOR A STADIA

- Determine the **beam size**:
 - Resolution(arcsec) ~ 206265.0/(longest baseline in wavelengths)
 - Make a dirty image, or
 - Use product images as a starting point
 - See parameters on the weblog

Determine longest baseline

T. TARA A AT A THE A SHORT

```
plotms(
vis='sis14_twhya_calibrated_flagged.ms',
xaxis='UVwave'.
yaxis='amp',
field = 'TW Hya',
avgspw=False,
avgtime='1e9',
avgscan=True,
coloraxis="spw",
showqui=True)
```


Imaging parameters

2 HAR 40 STORAGE AND A RANNER

- Determine the **beam size:**
 - Resolution(arcsec) ~ 206265.0/(longest baseline in wavelengths)
 - Make a dirty image, or
 - Use product images as a starting point
 - See parameters on the weblog

- Determine the pixel size -> cellsize:
 - Rule of thumb: ~5 pixels across the smallest direction of an elliptical beam

Imaging parameters

7. TARAO ARCOMENT AREA AR Show

- Determine the image size -> **imsize:**
 - Rule of thumb: ~1.5-2 times the HPBW primary beam (~ λ /D)
 - 12m primary beam in arcsec scales as 6300 / nu[GHz]
 - 7m primary beam in arcsec scales as 10608 / nu[GHz]

→ 6300 / 372.6 GHz = 17" @ 0.1" per pixel -> 170 pixels You can afford to make smaller images if target is compact at the phase center. We will choose 128 pixels.

• Remember to set the 'field' parameter to your target (select all fields for mosaics)

Regional Centre II Allegro

2. First look at imaging

Tclean - Dirty image

T TARA A AND A AND A A A MONT

```
tclean(vis='sis14_twhya_calibrated_flagged.ms',
imagename='phase_cal',
field='3',
spw=",
specmode='mfs',
deconvolver='hogbom',
gridder='standard',
imsize=[128,128],
cell=['0.1arcsec'],
weighting='natural',
threshold='0.0mJy',
interactive=True)
```


Tclean - Clean image - Phase calibrator

T THE 20 STOP THE WAR A SMOKE

```
tclean(vis='sis14_twhya_calibrated_flagged.ms',
    imagename='phase_cal',
    field='3',
    spw=".
    specmode='mfs',
    deconvolver='hogbom',
    gridder='standard',
    imsize=[128,128],
    cell=['0.1arcsec'],
    weighting='natural',
    threshold='0.0mJy',
    niter =5000
    interactive=True)
```


Tclean - Not cleaned enough

+ TARLO STORMAR AND A PROVEN

```
tclean(vis='sis14_twhya_calibrated_flagged.ms',
    imagename='phase_cal',
    field='3',
    spw=",
    specmode='mfs',
    deconvolver='hogbom',
    gridder='standard',
    imsize=[128,128],
    cell=['0.1arcsec'],
    weighting='natural',
    threshold='0.0mJy',
    niter =5000
    interactive=True)
```


Tclean - Cleaned just right

T TAR 20 STOR AND AND A STORE

```
tclean(vis='sis14_twhya_calibrated_flagged.ms',
    imagename='phase_cal',
    field='3',
    spw=".
    specmode='mfs',
    deconvolver='hogbom',
    gridder='standard',
    imsize=[128,128],
    cell=['0.1arcsec'],
    weighting='natural',
    threshold='0.0mJy',
    niter =5000
    interactive=True)
```


Tclean - Cleaned too much

T TAR 20 STOR AND AND A STORE

```
tclean(vis='sis14_twhya_calibrated_flagged.ms',
    imagename='phase_cal',
    field='3',
    spw=",
    specmode='mfs',
    deconvolver='hogbom',
    gridder='standard',
    imsize=[128,128],
    cell=['0.1arcsec'],
    weighting='natural',
    threshold='0.0mJy',
    niter =5000
    interactive=True)
```


+ TAR 20 STOR AND AND A TANK

```
tclean(vis='sis14_twhya_calibrated_flagged.ms',
    imagename='phase_cal',
    field='3',
    spw=",
    specmode='mfs',
    deconvolver='hogbom',
    gridder='standard',
    imsize=[128,128],
    cell=['0.1arcsec'],
    weighting='natural',
    threshold='0.0mJy',
    niter =5000
    interactive=True)
```


T. THERE AN AND AND AND A TRANSPORT

```
tclean(vis='sis14_twhya_calibrated_flagged.ms',
    imagename='phase_cal',
    field='3',
    spw=",
    specmode='mfs',
    deconvolver='hogbom',
    gridder='standard',
    imsize=[128,128],
    cell=['0.1arcsec'],
    weighting='natural',
    threshold='0.0mJy',
    niter =5000
    interactive=True)
```


T TATA AN ATOM THE AT THE A TOM

```
tclean(vis='sis14_twhya_calibrated_flagged.ms',
    imagename='phase_cal_robust',
    field='3'.
    spw=".
    specmode='mfs',
    gridder='standard',
    deconvolver='hogbom',
    imsize=[128,128],
    cell=['0.1arcsec'],
    weighting='briggs',
    robust = -1.0.
    threshold='0mJy',
    niter=5000,
    interactive=True)
```


T THE AN ARCOMMENT HAVE A SADAT

```
tclean(vis='sis14_twhya_calibrated_flagged.ms',
    imagename='phase_cal_robust',
    field='3'.
    spw=".
    specmode='mfs',
    gridder='standard',
    deconvolver='hogbom',
    imsize=[128,128],
    cell=['0.1arcsec'],
    weighting='briggs',
    robust=1.0.
    threshold='0mJy',
    niter=5000,
    interactive=True)
```


Tclean - Clean image - Amp calibrator

+ HARLO HIGH ALTRI ALTRIA & RADAR

```
tclean(vis='sis14_twhya_calibrated_flagged.ms',
    imagename='amp_cal_robust',
    field='2',
    spw=",
    specmode='mfs',
    gridder='standard',
    deconvolver='hogbom',
    imsize=[128,128],
    cell=['0.1arcsec'],
    weighting='natural',
    threshold='0mJy',
    niter=5000,
    interactive=True)
```


Tclean - Clean image - Amp calibrator

THAT A STORAGE AND A SHOW

```
tclean(vis='sis14_twhya_calibrated_flagged.ms',
    imagename='amp_cal_bigpix',
    field='2',
    spw=",
    specmode='mfs',
    gridder='standard',
    deconvolver='hogbom',
    imsize=[32,32],
    cell=['0.5arcsec'],
    weighting='natural',
    threshold='0mJy',
    niter=5000,
    interactive=True)
```


EUROPEAN ARC

ALMA Regional Centre || Allegro

Tclean - Target

T TAR 20 STOR AND AND A STORE

```
tclean(vis='sis14_twhya_calibrated_flagged.ms',
    imagename='twhya_cont',
    field='5'.
    spw='0:0~239;281~383',
    specmode='mfs',
    gridder='standard',
    deconvolver='hogbom',
    imsize=[250,250],
    cell=['0.08arcsec'],
    weighting='briggs',
    robust=0.5,
    threshold='0mJy',
    niter=5000.
    interactive=True)
```


Tclean - Target - Non-interactive clean

T TARA A STORAGE AND A Show

```
tclean(vis='sis14_twhya_calibrated_flagged.ms',
    imagename='twhya_cont_auto',
    field='0',
    spw='0:0~239;281~383',
    specmode='mfs',
    gridder='standard',
    deconvolver='hogbom',
    imsize=[250,250],
    cell=['0.08arcsec'],
    mask='box [ [ 100pix , 100pix] , [150pix, 150pix ] ]',
    weighting='briggs',
    robust=0.5.
    threshold='15mJy',
    niter=10000,
    interactive=False)
```


EUROPEAN ARC ALMA Regional Centre || Allegro

Primary beam correction

+ ARAO ARA ARA ARA ARAONTA

impbcor(imagename='twhya_cont.image',
 pbimage='twhya_cont.pb',
 outfile='twhya_cont.pbcor.image')

3. First look at Self-calibration

List of steps executed by this script thesteps=[] step title = {0: 'List the data set and plot antennas and visibility spectrum', 1: 'Make dirty image of continuum', ### INITIAL MODEL 'Make an initial, conservative cleaning', 3: 'Check and save model', ### FIRST ROUND OF SELF-CALIBRATION - PHASE 4: 'Calculate gain solution table - phase-only, solution interval = scan-length', 5: 'Explore different solution intervals'. 6: '[ADVANCED] Calculate SNR of the different solution intervals', 7: 'Apply calibration table', 8: 'Make second, conservative cleaning and save model', ### SECOND ROUND OF SELF-CALIBRATION - PHASE 9: 'Explore different solution intervals', 10: '[ADVANCED] Calculate SNR of the different solution intervals'. 11: 'Calculate gain solution table - phase-only, solution interval = 60s applying round 1 table on-the-fly', 12: 'Apply calibration tables', 13: 'Make image of continuum and save model', ### THIRD ROUND OF SELF-CALIBRATION - AMPLITUDE & PHASE 14: 'Calculate gain solution table - amplitude and phase, long solution interval', 15: 'Apply calibration tables', 16: 'Make image of continuum and save model', ### FOURTH ROUND OF SELF-CALIBRATION - AMPLITUDE & PHASE 17: 'Calculate gain solution table - amplitude and phase, short solution interval', 18: 'Apply calibration table', ### FINAL CONTINUUM IMAGE Script written by Dr. M.C. Toribio 19: 'Make image of continuum and save model', https://almascience.eso.org/tools/eu-arc-network/i-train EUR

7. THE AN AND THE AREA A SHOW

Initial step

Dataset: **sis14_twhya_calibrated_flagged.ms** Selfcal Script: **twhya_selfcal.py**

Open the script in a terminal. (gedit, vi, emacs)

Define the variable: mysteps = [0] Save it and open CASA.

helada [1] > nice +10 casapy-560

The start-up time of CASA may vary depending on whether the shared libraries are cached or not.

T. TARA AN ANTA AND A AND A

IPython 5.1.0 -- An enhanced Interactive Python.

CASA 5.6.0-60 -- Common Astronomy Software Applications

Found an existing telemetry logfile:

/home/perezsanchez/.casa/casastats-560-60-1e02b0110e82a43e6-20211125-184523.log Telemetry initialized. Telemetry will send anonymized usage statistics to NRAO. You can disable telemetry by adding the following line to your ~/.casarc file: EnableTelemetry: False --> CrashReporter initialized. Enter doc('start') for help getting started with CASA... Using matplotlib backend: TkAgg

CASA <1>: mysteps=[0] CASA <2>: execfile('twhya_selfcal.py') **0:** 'List the data set and plot antennas and visibility spectrum',

1: 'Make dirty image of continuum'.

••••		sis14_twhya_calANDflag_listobs.txt							
MeasurementSet Name: /Users/apere	z/Allegro/Work/2021SciDay-II	######################################							
Observer: CQL Project: uid://A002/X327 Observation: ALMA Data records: 80563 Total elapsed time Observed from 19-Nov-2012/07:36:57.0 t	408/X6f = 5647.68 seconds o 19-Nov-2012/09:11:04.7	······································							
Observation ID = 0 Array ID = 0 Date Timerange (UTC) Scan 19-Nov-2012/07/36/37.0 -07/39/31.31 4 19-Nov-2012/07/36/37.0 -07/39/31.27 7 07/32/42.0 -07/33/31.1 4 07/32/42.0 -07/33/31.1 4 07/32/42.0 -07/33/31.1 4 07/32/42.0 -07/33/31.1 4 07/32/42.0 -07/33/31.1 4 07/32/42.0 -07/33/31.1 4 08/36/31.0 -08/37/30.2 7 08/36/31.0 -08/37/30.2 16 08/36/31.1 -08/37/40.2 24 08/32/00.5 -08/37/40.2 24 08/32/00.5 -08/37/40.2 24 08/32/00.5 -08/37/40.2 24 08/33/31.1 -08/37/40.2 24 08/33/31.2 -09/30/31.7 23 08/33/31.2 -09/30/31.2 24 08/33/31.2 -09/30/31.2 34 08/33/31.2 -09/30/31.6 38 0	 Lold FieldMame 0 19522-364 Ceres 19522-364 1952-365 1949a 11837-295 	NRAVE Spwlids Average Interval(s) ScanIntent 4280 [0] [6.63] [CALIBATE_BANDPASSON_SOURCE, CALIBATE_PHASERON_SOURCE, CALIBATE_WYRRON_SOURCE 3880 [0] [6.63] [CALIBATE_MAILEND, SOURCE, CALIBATE_PHASERON_SOURCE, CALIBATE_WYRRON_SOURCE 3880 [0] [6.63] [CALIBATE_MAILEND, SOURCE, CALIBATE_PHASERON_SOURCE 3980 [0] [6.63] [CALIBATE_MAISSONE, SOURCE, CALIBATE_WYRRON_SOURCE] 3980 [0] [6.63] [CALIBATE_PHASERON_SOURCE, CALIBATE_WYRRON_SOURCE] 3980 [0] [6.63] [CALIBATE_MAISSONE, CALIBATE_WYRRON_SOURCE] 3180 [0] [6.63] [CALIBATE_MAISSONE, CALIBATE_WYRRON_SOURCE] 3180 <td< td=""></td<>							
Fields: 5 ID Code Name RA 0 none 19522-364 05:22:57.9846 2 none Ceres 9 3 none 11857-295 16:15.9395 3 none 11857-295 16:15.15.0395 6 none 3:2728 11:15611.1865 Spectral Windows: (1 unique spectral vindows 8 MUR Name 07#8B.2#5W-01#FULL_RES 38 Sources: 5 10 Name 5 10 Name 5 10 Code 10 Name 10	Decl Epoch S B8 -36.27.30.85128 J2000 0 be 23.22.06.90668 J2000 2 50 -23.34.62.81310 J2000 2 50 -23.34.62.81310 J2000 2 r = 05.47.21.52464 J2000 2 and 1 unique polarization s Frame Ch0(MHz) Sha00/ 4 TOPO 372533.086 () SysVel(km/s) -	SrcId nRows e 4209 2 3080 3 16080 5 Jup 3 5 setup 3 10 file 1 file							
2 J1037-295 0 - 3 TW <u>Hya</u> 0 - 4 3c279 0 - Antennas: 21: ID Name Station <u>Diam</u> . Long.	Lat. Offset	st from array center (m) ITRF Geocentric coordinates (m)							
1 DA42 A458 12.0 m - 067.45.16.2 2 DA44 A466 12.0 m - 067.45.16.2 3 DA45 A878 12.0 m - 067.45.12.6 4 DA45 A878 12.0 m - 067.45.12.7 5 DA43 A846 12.0 m - 067.45.17.9 7 DA43 A846 12.0 m - 067.45.17.9 7 DA43 A847 12.0 m - 067.45.16.2 7 DA43 A847 12.0 m - 067.45.16.2 10 DV85 A867 12.0 m - 067.45.16.2 11 DV85 A862 12.0 m - 067.45.16.3 12 DV86 A837 12.0 m - 067.45.17.2 15 DV86 A872 12.0 m - 067.45.17.2 16 DV86 A874 12.0 m - 067.45.17.2 17 DV15 A874 12.0 m - 067.45.17.2 18 DV15 A874 12.0 m - 067.45.17.2 19 DV15 A874 12.0 m - 067.45.17.2 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mortin Letval.100 Description 31 Mortin Letval.100 Description 32 631.725 21.678.02 Description 33 631.725 Description Description 33 741.4934 Description Description 33 741.4934 Description Description 34 -668.452 22.2581.0786 Description 57 -678.4593 22.2581.0786 Description 57 -742.7087 21.6757 22.2588.07828 S-444802.078079 -2481722.548534 43 -668.4552 22.1582 Description -4589993.764157 -2481723.548534 43 -668.4552 22.1582.07828 -544852.072979 -2481742.548534 43 -668.45532 22.1583.07853 -458127.25235 -2481624.07235 43 -676.45393 22.4582.078535 -544852.078657 -448174.548845 33 -740.9533 15.7582 2222885.3444853 -548174.548857 -448174.548845 33							

EUROPEAN ARC ALMA Regional Centre || Allegro

- ATA 40 ATO ALAR HATE & A MONTA

0.9

0: 'List the data set and plot antennas and visibility spectrum',

1: 'Make dirty image of continuum'.

#_____ mvstep = 1if(mystep in thesteps): casalog.post('Step '+str(mystep)+' '+step_title[mystep],'INFO') print('Step ', mystep, step_title[mystep]) ## Make a first dirty imaging of the continuum to get a sense of the structure of the object imagename = visname + '_cont.dirty' os.system('rm -rf '+imagename+'.*') tclean(vis = vis,imagename = imagename, field = field.spw='0'. specmode='mfs'. cell='0.1arcsec'. imsize=256. deconvolver='hogbom', weighting='natural", niter=0. interactive=False) # view image imview(imagename+'.image')

2 TARLO STOP AND AND A STOPPING

- TARLA STORAGE AND A STORAGE

2: 'Make initial, conservative clean',

3: 'Check and save model'.

tclean(vis = vis, imagename = imagename, field = field, spw='0', specmode='mfs', cell='0.1arcsec', deconvolver='hogbom', weighting='natural', imsize=256, niter = 200, 0%...10.... 0%...10...

0%...10...20...30...40...50...60...70...80...90...100% 0%...10...20...30...40...50...60...70...80...90...100% 0%...10...20...30...40...50...60...70...80...90...100% 0%...10...20...30...40...50...60...70...80...90...100% rms 0.015, peak 0.584, snr 40

- 2: 'Make initial, conservative clean',
- 3: 'Check and save model'.

force model to save
ft(vis=vis, model=modelname, usescratch=True)

- 4: 'Calculate gain solution table phase-only, solution interval = scan-length',
- 5: 'Explore different solution intervals'.

solint='inf' caltable=visname+'_cont.ph1.solint_'+solint+'.tb'

gaincal(vis = vis, field= 'TW Hya', refant=refantenna, caltable=caltable, spw='0', calmode='p', solint=solint, gaintype='G', minsnr=3)

plotms(vis=caltable,xaxis='time',yaxis='phase', iteraxis='antenna',gridrows=3, gridcols=3,coloraxis='spw')

Tables saved in the ph1_check folder!

T TALLA STORAGE STAR A STAR

- 4: 'Calculate gain solution table phase-only, solution interval = scan-length',
- 5: 'Explore different solution intervals'.

```
# The following loop calculates gaincal solutions for a list of intervals and makes corresponding plots
# The output is saved in a separate folder
selfcal_cycle = 'ph1_checks'
solint_all = ['int', '20s', '40s', '60s', '80s', '160s','220s', 'inf']
for solint in solint_all:
    print('Solint', solint)
    caltable = visname+'.'+selfcal_cycle+'.solint_'+solint+'.tb'
    gaincal(vis=vis,
        caltable=caltable,
        solint=solint,
        refant=refantenna,
        spw='0',
        calmode='p',
        gaintype='G',
        minsnr=3)
```

THE LO STOPPEN AND A SHORT

make plots for antenna triplets that will be saved in png files
plot_gaincal_table(caltable)
os.system('rm -r '+selfcal_cycle)
if not os.path.exists(selfcal_cycle):
 os.makedirs(selfcal_cycle)
 os.system('mv *.'+selfcal_cycle+'*tb* '+selfcal_cycle+'/')
 print("Check output of this step in folder: "+selfcal_cycle)

6.'[ADVANCED] Calculate SNR of the different solution intervals'.

7. THE AN ACCORTANT WARRANT AND AND A

ALMA Regional Centre || Allegro

7. Apply Calculate SNR of the different solution intervals'.

apply the solutions to the MS

caltable=visname+'_cont.ph1.solint_inf.tb'

- applycal(vis = vis,
 - field= field,

spw='0',

spwmap=[0],

```
gaintable=caltable,
calwt = False,
```

applymode='calonly',

flagbackup = False)

				sis14_twhya_calA	NDflag_cont.ph1	.solint_inf.tb					
	TIME	FIELD_ID	SPECTRAL_WINDOW_ID	ANTENNA1	ANTENNA2	INTERVAL	SCAN_NUMBER)BSERVATION_II	CPARAM	PARAMERR	FLAG
0	4.86003e+09	5	0	0	24	0	12	0	[2, 1] Complex	[2, 1] Float	[2, 1] Boo
1	4.86003e+09	5	0	1	24	0	12	0	[2, 1] Complex	[2, 1] Float	[2, 1] Boo
2	4.86003e+09	5	0	2	24	0	12	0	[2, 1] Complex	[2, 1] Float	[2, 1] Boo
3	4.86003e+09	5	0	3	24	0	12	0	[2, 1] Complex	[2, 1] Float	[2, 1] Bo
4	4.86003e+09	5	0	4	24	0	12	0	[2, 1] Complex	[2, 1] Float	[2, 1] Bo
5	4.86003e+09	5	0	5	24	0	12	0	[2, 1] Complex	[2, 1] Float	[2, 1] Bo
6	4.86003e+09	5	0	6	24	0	12	0	[2, 1] Complex	[2, 1] Float	[2, 1] Bo
7	4.86003e+09	5	0	7	24	0	12	0	[2, 1] Complex	[2, 1] Float	[2, 1] Bo
8	4.86003e+09	5	0	8	24	0	12	0	[2, 1] Complex	[2, 1] Float	[2, 1] Bo
9	4.86003e+09	5	0	9	24	0	12	0	[2, 1] Complex	[2, 1] Float	[2, 1] Boo
	4 0000000	-	•	40	~	^	10	^	ro 41 0	10 41 Flast	ro 41 D-

T. ARAO STOPPEN AND A SADA

browsetable(caltable):

SPECTRAL_WINDOW_ID column == [0,1]

If: spw='0,1,2'

spwmap = [[0,1],[0,1],[0,1]]

8: 'Make second, conservative cleaning and save model',

magename = visname + '_cont.ph1.clean'	
os.system('rm -rf '+imagename+'.*')	
clean(vis = vis,	
imagename = imagename,	
field = field,	
spw=contchans,	0%102030405060708090100%
specmode='mfs', cell='0.1arcsec',	0%102030405060708090100%
deconvolver='hogbom', weighting='natural'.	0%102030405060708090100%
imsize=256, niter=200	0%102030405060708090100%
interactive=True)	0%102030405060708090100%
#Got image statistics for comparison	0% 10 20 30 40 50 60 70 80 90 100%

#Get image statistics for comparison get_im_stats(imagename+'.image')

#force model to save modelname=imagename+'.model' ft(vis=vis,model=modelname,usescratch=True)

rms 0.008, peak 0.615, snr 81
0%102030405060708090100%
0%102030405060708090100%
0%102030405060708090100%
0%102030405060708090100%
0%102030405060708090100%

T. TARAO STORAGE STATE & SALES

sis14_twhya_calANDflag_cont0.init.clean.image-raster 06" 09" 12" J2000 Declination 15" 0 18'' 21''24" 27" \bigcirc -34°42'30'' 4 11^h01^m52^s.8 52^s.2 51[°].8 51^s.4 51^s.0 J2000 Right Ascension

T TARA A TARA AND A TARA A TARA

snr 40

EUROPEAN ARC ALMA Regional Centre || Allegro

snr 81

Set mysteps=[9,10,11,12,13]

FIRST ROUND OF SELF-CALIBRATION - PHASE 'Calculate gain solution table - phase-only, solution interval = scan-length', 4: 'Explore different solution intervals'. 5: '[ADVANCED] Calculate SNR of the different solution intervals'. 7: 'Apply calibration table', 8: 'Make second, conservative cleaning and save model', ### SECOND ROUND OF SELF-CALIBRATION - PHASE 9: 'Explore different solution intervals', 10: '[ADVANCED] Calculate SNR of the different solution intervals', 11: 'Calculate gain solution table - phase-only, solution interval = 60s applying round 1 table on-the-fly', 12: 'Apply calibration tables', 13: 'Make image of continuum and save model', ### THIRD ROUND OF SELF-CALIBRATION - AMPLITUDE & PHASE 14: 'Calculate gain solution table - amplitude and phase, long solution interval', 15: 'Apply calibration tables', 16: 'Make image of continuum and save model', ### FOURTH ROUND OF SELF-CALIBRATION - AMPLITUDE & PHASE 17: 'Calculate gain solution table - amplitude and phase, short solution interval', 18: 'Apply calibration table', **###** FINAL CONTINUUM IMAGE 19: 'Make image of continuum and save model',

+ TARA A ANTAL AND A SHOW

ALMA Regional Centre || Allegro

11: 'Calculate gain solution table - phase-only, solution interval = 60s applying round 1 table on-the-fly', 12: 'Apply calibration tables',

T THE RO STORE THE ALL A SMOK

```
solint_1='inf'
solint='60s'
caltable = visname + '_cont.ph2.solint_'+solint+'.tb'
os.system('rm -rf '+caltable)
gaincal(vis = vis,
     field= 'TW Hya',
     refant=refantenna.
     caltable=caltable.
     spw='0'.
     gaintable = [visname + '_cont.ph1.solint_'+solint_1+'.tb'],
     spwmap=[0],
     calmode='p',
     solint=solint,
     qaintype='G'.
     minsnr=3)
        EUROPEAN ARC
       ALMA Regional Centre || Allegro
```

apply the cumulative solutions to the MS solint_1='inf' solint_2='80s' applycal(vis = vis, field= field, spw='0', gaintable=[visname+'_cont.ph1.solint_'+solint_1+'.tb', visname+'_cont.ph2.solint_'+solint_2+'.tb'], spwmap=[[0],[0]], calwt = False, applymode='calonly', flagbackup = False) 11: 'Calculate gain solution table - phase-only, solution interval = 60s applying round 1 table on-the-fly', **12: 'Apply calibration tables',**

7. TARAO STORMAR ARTIN A SAIDA

```
solint 1='inf'
solint='60s'
caltable = visname + '_cont.ph2.solint_'+solint+'.tb'
os.system('rm -rf '+caltable)
gaincal(vis = vis,
    field= 'TW Hya',
     refant=refantenna.
     caltable=caltable.
     spw='0'.
     gaintable = [visname + '_cont.ph1.solint_'+solint_1+'.tb'],
     spwmap=[0],
     calmode='p',
     solint=solint.
     gaintype='G',
     minsnr=3)
```



```
# apply the cumulative solutions to the MS
solint_1='inf'
solint_2='80s'
applycal(vis = vis,
    field= 'TW Hya',
    spw='0',
    gaintable=[visname+'_cont.ph1.solint_'+solint_1+'.tb',
    visname+'_cont.ph2.solint_'+solint_2+'.tb'],
    spwmap=[[0],[0]],
    calwt = False,
    applymode='calonly',
    flagbackup = False)
```

After tclean()... rms 0.008, peak 0.620, snr 80

14: 'Calculate gain solution table - amplitude and phase, long solution interval', 15: 'Apply calibration tables',

long solution interval, applying previous solutions on the fly solint='inf' caltable = visname + '_cont.ap1.solint_'+solint+'.tb' # apply the cumulative solutions to the MS solint_1='inf' os.system('rm -rf '+caltable) gaincal(vis = vis.)field= field. refant=refantenna. caltable=caltable. gaintable = [visname + '_cont.ph1.solint_'+**solint_1**+'.tb'], spwmap=[[0],[0]], spw=contchans, calmode='ap', solint=solint, gaintype='G', minsnr=3)

2. ARIO ROMAN AND A Show

14: 'Calculate gain solution table - amplitude and phase, long solution interval', **15: 'Apply calibration tables',**

```
solint='inf'
solint 1='inf'
solint 2='80s'
applycal(vis = vis,
    field= 'TW Hya'.
    spw='0',
    spwmap=[[0],[0],[0]],
    gaintable=[visname+'_cont.ph1.solint_'+solint_1+'.tb',
               visname+'_cont.ph2.solint_'+solint_2+'.tb',
               visname+'_cont.ap1.solint_'+solint+'.tb'1.
    calwt = False.
    applymode='calonly'.
    flagbackup = False)
```

A THE AD STOCKED AND A SADA

After final tclean() run

THE LO STOPPEN AND A SHORT

Initial map:

rms 0.015, peak 0.584, snr 40
After applying .ph1 table for solint= 'inf':
 rms 0.008, peak 0.615, snr 81 (+)
 <u>After applying .ph2 table for solint= '60s':
 rms 0.008, peak 0.620, snr 80</u>

After applying **.ap1** table for solint= 'inf': **rms 0.006**, peak 0.607, **snr 101**

4. Line imaging

Plotms

T TARA A ANTA AND A TANK

plotms(vis='sis14_twhya_selfcal.ms', xaxis='channel', yaxis='amp', field='5', avgspw=False, avgtime='1e9', avgscan=True, avgbaseline=True, showgui = True)

UVcontsub

- ARA A STORAGE AREA A RADIA

uvcontsub(vis = 'sis14_twhya_selfcal.ms', field = '5', fitspw = '0:0~239;281~383', excludechans = False, fitorder = 0, solint='int')

Plotms

T. TATAO STOPPEN AND A TADAN

plotms(vis='sis14_twhya_selfcal.ms.contsub',

xaxis='channel', yaxis='amp', field='0', avgspw=False, avgtime='1e9', avgscan=True, avgbaseline=True, showgui = True)

Tclean - N2H+ line

tclean(vis = 'sis14_twhya_selfcal.ms.contsub', imagename = 'twhya_n2hp', field = 0° . spw = '0', specmode = 'cube', nchan = 15.start = '0.0km/s'. width = 0.5km/s'. outframe = 'LSRK'. restfreg = '372.67249GHz', deconvolver= 'hogbom', gridder = 'standard', imsize = [250, 250]. cell = '0.08 arcsec'.phasecenter = 0. weighting = 'briggs', robust = 0.5. restoringbeam='common', interactive = True. niter=5000)

5. Image analysis

Imhead

+ TARLO STORAGE AND A STORAGE

imhead("sis14_twhya_cont.image")

Image name		TPIATCM	mya_conc.	. Illiage							
Object name	e : 1	W Hya									
Image type	: 1	PagedIma	ige								
Image quant	tity :]	Intensit	y								
Pixel mask	(s) : n	nask0									
Region(s)	: 1	lone									
Image unit:	s : :	Jy/beam									
Restoring 1	Beam : C	0.830341	arcsec,	0.68370	4 arcs	sec, -	-66.1199 d	leg			
Direction :	reference	: J2000)								
Spectral :	reference	: LSRK									
Velocity 1	type	: RADIO									
Rest freque	ency	: 3.726	537e+11 H:	z							
Pointing co	enter	: 11:0	1:51.7960	000 -34	.42.1	7.3660	000				
Telescope		: ALMA									
Observer		: cqi									
Date observ	vation	: 2012/	11/19/07:	:56:27							
Telescope p	position:	[2.2251	4e+06m, -	-5.44031	e+06m,	-2.4	48103e+06m] (IT	'RF)		
Axis Coord	Туре	Name		Proj	Shape	Tile	Coord v	alue	at pixel	Coord incr	Units
0 0	Direction	n Right	Ascension	n SIN	250	250	11:01:51	.796	125.00	-1.000000e-01	arcsec
1 0	Direction	n Declin	nation	SIN	250	250	-34.42.17	.366	125.00	1.000000e-01	arcsec
2 1	Stokes	Stokes	5		1	1		I			
3 2	Spectral	Freque	ency		1	1	3.72637	e+11	0.00	2.34445114878e+08	Hz
		Veloci	ty					0	0.00	-1.886149e+02	km/s
##### End !	Task: imhe	ad		#####							
##########	*****	*#######	*########	#######							

Imhead

imhead("twhya_n2hp.image")

7. TARAO ARCONTANT ARTA & Show

Begin Task: imhead
imhead(imagename="twhya_n2hp.image",mode="summary",hdkey="",hdvalue="",verbose=False)

: twhya_n2hp.image Image name Object name : TW Hya Image type : PagedImage Image quantity : Intensity : mask0 Pixel mask(s) Region(s) : None Image units : Jv/beam Restoring Beam : 0.750766 arcsec, 0.598023 arcsec, -59.397 deg Direction reference : J2000 Spectral reference : LSRK Velocity type : RADIO Rest frequency : 3.72672e+11 Hz : 11:01:51.796000 -34.42.17.366000 Pointing center Telescope : ALMA Observer : cgi : 2012/11/19/07:56:27 Date observation Telescope position: [2.22514e+06m, -5.44031e+06m, -2.48103e+06m] (ITRF) Axis Coord Type Name Proj Shape Tile Coord value at pixel Coord incr Units _____ 0 0 Direction Right Ascension -8.000000e-02 arcsec SIN 250 125 11:01:51.796 125.00 Direction Declination SIN 250 50 -34.42.17.366 125.00 8.000000e-02 arcsec 1 0 2 1 Stokes Stokes 1 1 Т 15 5 3.726725e+11 0.00 -6.21550810e+05 Hz 3 2 Spectral Frequency Velocity 0 0.00 5.000000e-01 km/s ##### End Task: imhead #####

Imstat

Begin Task: imstat

imstat(imagename="twhya_n2hp.image", axes=-1, region="", box="", chans="0~4", stokes="", listit=True, verbose=True, mask="", stretch=False, logfile="", append=True, algorithm="classic", fence=-1, center="mean",

imstat("sis14_twhya_cont.image", box="100,100,150,150")

<pre>lside=True,zscore=-1,maxiter=-1,clmethod="aut</pre>	:o", niter=3)
No directional region specified. Using full positional	plane.
Using channel range(s)	
Using polarizations ALL	
Determining stats for image twhya_n2hp.image	
Selected bounding box :	
[0, 0, 0, 0] to [249, 249, 0, 4] (11:01:52.607,	-34.42.27.366, I, 3.726725e+11Hz to 11:01:50.992, -34.42.07.446, I, 3.7267e+11Hz)
Statistics calculated using Classic algorithm	
Regions	
bottom-left corner (pixel) [blc]: [0, 0,	0, 0]
top-right corner (pixel) [trc]: [249.	249. 0. 41
bottom-left corner (world) [blcf]: 11:01:	52,607, -34,42,27,366, I, 3,726725e+11Hz
top-right corner (world) [trcf]: 11:01:	50,992, -34,42,07,446, I, 3,7267e+11Hz
Values	
flux [flux]: -0.	168573 Jv.km/s
number of points [npts]:	92095
maximum value [max]:	129122 Jv/beam
minimum value [min]:	-0.106066 Jy/beam
position of max value (pixel) [maxpos]:	73. 11. 0. 21
position of min value (pixel) [minpos]:	43. 158. 0. 11
position of max value (world) [maxposf]:	11:01:52,133, -34,42,26,486, I, 3,726712e+11Hz
position of min value (world) [minposf]:	11:01:52 328 -34 42 14 726 I. 3 726719e+11Hz
Sum of pixel values [sum]:	-26.7995 Jv/beam
Sum of squared pixel values [sumsq]:	205.058 JV/beam JV/beam
Statistics	
Mean of the nixel values [mean]	-9 17492e-05 .Tv/beam
Variance of the pixel values :	000702021 JV/beam
Standard deviation of the Mean [sigma]: (0264957 JU Joann
Root mean square [rms]:	0.0264958 JV/beam
Median of the nivel values [median]:	0 000341541 Ty/beam
Median of the deviations [medabsdevmed]: (0.017756 JV./boam
IOR [martile]:	0.0356 Ju/Joan
First martile [all:	0.0170168 Ju/heam
Thist quartile [q1].	0.0175105 5y/beam
Inita qualcite [qJ].	. Grijssi Gylbean
Mann and unit - Sy/Deam	
Std dev gelump unit - Tu /beem	
Std_dev column unit = Sy/beam	
Minimum column unit = Jy/beam	
Maximum column unit = Jy/beam	Std day Minimum Mayimum
NPLS Sum Mean Rms	
2.920950e+05 -2.6/9940e+01 -9.1/4920e-05 2.6495/8e-	-UZ Z.04956/0-UZ -1.U000650-UI 1.Z91Z190-UI

Imstat

- ARAO ARTAR ARTA KENDAT

imstat("sis14_twhya_cont.image", box="25,150,225,200")

##### Begin Task: imstat #####		
imstat (imagename="sis14_twhya_cont.image", axes=-1, region="", box="100, 100, 150, 150", chans="",		
<pre>stokes="", listit=True, verbose=True, mask="", stretch=False,</pre>		
logfile="",append=True.algorithm="classic".fence=-1.center="mean".		
<pre>lside=True.zscore=-1.maxiter=-1.clmethod="auto".niter=3)</pre>		
Using specified box(es) 100,100,150,150		
Determining stats for image sigl4 twive cont image		
Selected hounding how ·		
Statistics calculated using Classic algorithm		
Baring		
bottom-left corner (nivel) [b]c]: [100 100 0 0]		
- boccontext (pixel) [br]: [150, 150, 0, 0]		
- coperigin conner (pres) [CC]. [CS, IS, 00, -24 / 2 10 266 T 2 72627a1114		
DOLCOM-LELC COTNET (WOILD) [DICL]: 11.01.51.393, -34.42.19.000, 1, 5.7263/011112		
top-right corner (world) [trci]: 11:01:31.353, -34.42.14.000, 1, 3.1203/e+11Hz		
Values		
nux density [nux]: 1.00010 Jy		
number of points (npts): 2001		
maximum value [max]: 0.6226/6 Jy/Deam		
minimum value [min]: -0.0101302 Jy/Beam		
position of max value (pixel) [maxpos]: [120, 127, 0, 0]		
position of min value (pixel) [minpos]: [136, 135, 0, 0]		
position of max value (world) [maxposr]: 11:01:51.837, -34.42.17.166, 1, 3.72637e+11Hz		
position of min value (world) [minposf]: 11:01:51.707, -34.42.16.366, I, 3.7263/e+11Hz		
Sum of pixel values [sum]: 119.658 Jy/beam		
Sum of squared pixel values [sumsq]: 37.9836 Jy/beam		
Statistics		
Mean of the pixel values [mean]: 0.0460044 Jy/beam		
Variance of the pixel values : 0.0124919 Jy/beam		
Standard deviation of the Mean [sigma]: 0.111/6/ Jy/beam		
Root mean square [rms]: 0.120845 Jy/beam		
Median of the pixel values [median]: 0.0012564/ Jy/beam		
Median of the deviations [medabsdevmed]: 0.00456389 Jy/beam		
IQR [quartile]: 0.0197377 Jy/beam		
First quartile [q1]: -0.00179461 Jy/beam		
Third quartile [q3]: 0.0179431 Jy/beam		
Sum column unit = Jy/beam		
Mean column unit = Jy/beam		
Std_dev column unit = Jy/beam		
Minimum column unit = Jy/beam		
Maximum column unit = Jy/beam		
Npts Sum Mean Rms Std_dev Minimum Maximum		
2.601000e+03 1.196576e+02 4.600444e-02 1.208448e-01 1.117670e-01 -1.013024e-02 6.226758e-01		
##### End Task: imstat #####		

T TARA A TO THE AT A TOM TO

immoments("twhya_n2hp.image",

outfile="sis14_twhya_n2hp.mom0", includepix=[20e-3,100], chans="4~12", moments=0)

T. TAR AN ARCANTAGE AND A TARAT

immoments("twhya_n2hp.image",

outfile="sis14_twhya_n2hp.mom1", includepix=[40e-3,100], chans="4~12", moments=1)

- TARLO STORAGE AND A SHOW

immoments("twhya_n2hp.image", outfile="sis14_twhya_n2hp.mom1", includepix=[80e-3,100], chans="4~12", moments=1)

+ TARA AND ALTA AND A Show

immoments("twhya_n2hp.image", outfile="sis14_twhya_n2hp.mom1", includepix=[120e-3,100], chans="4~12", moments=1)

imview

T TAR 20 STOR ALTA ALTA & TOPATS

imview(raster={'file': 'sis14_twhya_cont.image', 'range': [-0.01,0.2]}, contour={'file': 'sis14_twhya_n2hp.mom0', 'levels': [0.5,0.6,0.7,0.8] })

Still unsure about something?

LO RECENTER AND

Contact us if you have any questions or need help with your data!

Our services include (but are not limited to):

- Reproducing calibrated measurement sets or obtaining calibrated measurement sets from the ARI-L group
- Inspection of data quality
- Guidance with imaging techniques
- Computing resources & access to useful software
- Archive mining

MA Regional Centre || Allegro

• Proposal preparation

Email us: <u>alma@strw.leidenuniv.nl</u>

Thank you!