

Analysis Tools

Alex Hygate (<u>hygate@strw.leidenuniv.nl</u>)

Prepare for the exercises

THERE AN AND ALTER HERE A RADIA

In your analysis folder

• mkdir analysis_tools

- If you already did all this:
 - cd ../analysis_tools
 - Start CASA

Copy the data

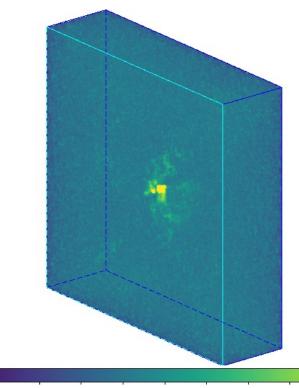
- cp -r ../../archive/DRT2023/TW_hydra/twhya_n2hp.image analysis_tools/.
- cp -r ../../archive/DRT2023/TW_hydra/sis14_twhya_cont.image analysis_tools/.

Copy scripts from the 'scripts' folder to your own folder

> cp ../../scripts/analysis_tools_script.py analysis_tools/.

Start CASA

ALMA Regional Centre || Allearo


• nice +10 env -u PYTHONPATH -u LD_LIBRARY_PATH casapy-660

Datacubes

+ TARA AND AND AND A THOMAS

- 3D data product:
 - 2 spatial dimensions (RA, DEC)
 - 1 velocity dimension
- We will look at a few datacube analysis methods

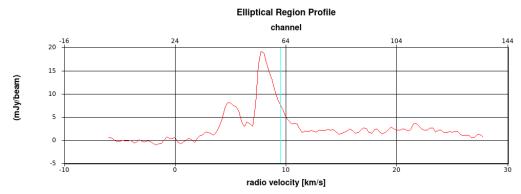
Analysis tools

- We will look at analysis in CASA
- CASA <u>https://casa.nrao.edu/casa_obtaining.shtml</u>

- Many others tools are available! We have many of these available on our computers
- Contact us at <u>alma@strw.leidenuniv.nl</u> with questions about or requests for assistance with analysing your alma data

Analysis Techniques

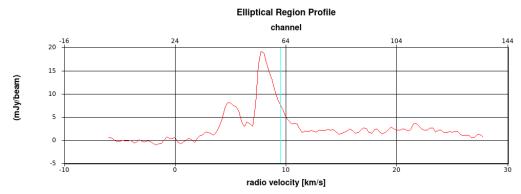
T TATA A ATOM AND A TAMA


- To visualize the information we usually make 1-D or 2-D projections providing different visualisation/analysis methods:
 - Spectral profiles (1-D slices along the velocity axis)
 - Channel maps (2-D slices along the velocity axis)
 - Moment maps (integration along the vel. axis)
 - Position-velocity plots (slices along spatial dimension)
 - Movies (series of 2-D slices along velocity axis)

Spectral profiles

A TAR 40 STOP AND AND A SADAR

- Spectral profiles are 1-D slices along the velocity axis
- They can be created with the CASA viewer



Spectral profiles

A TAR 40 STOP AND AND A SADAR

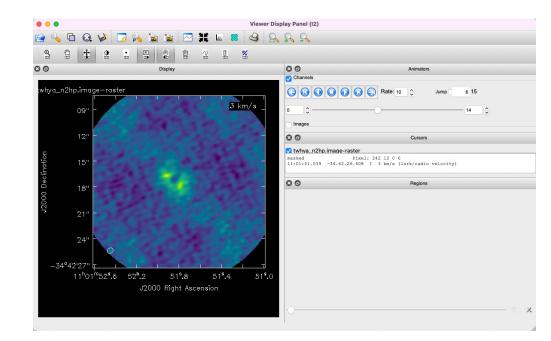
- Spectral profiles are 1-D slices along the velocity axis
- They can be created with the CASA viewer

Exercise – start up CASA

THAT A STORAGE AND A THOMAN

- Use the "nice" command to prevent taking up all the CPU power for example for CASA
 - In (ba)sh shell: > nice -n 10 env -u PYTHONPATH -u
 LD_LIBRARY_PATH casapy-660
 - In (t)csh shell: > nice +10 env -u PYTHONPATH -u
 LD_LIBRARY_PATH casapy-660

Spectral profiles


- TARAO STORAGE HERE A TODAT

Open the casa viewer:

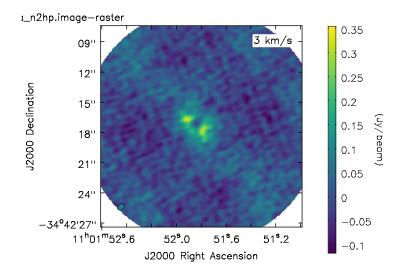
 CASA <1>: imview('twhya_n2hp.image')

NB: Also works with .fits images

CASA <1>: imview('my_image.fits')

Exercise – Run the script

Open the casa viewer:


- CASA <1>: mysteps = [1]
- CASA <2>: execfile('analysis_tools_script.py')

Channel maps

T TATAO STOPPEN AND A TAPAT

- Channels are 2D slices along the velocity axis
- Channel maps and other plots can be created in the CASA viewer
- First open the image in the viewer and select the channel you want to plot
 - o imview('twhya_n2hp.image')

Channel maps

7. TARLO STOPPEND HE WE A STOPPEND

- Click the spanner button
- Select options to customsise your plot
 - e.g. set "display color wedge" to true

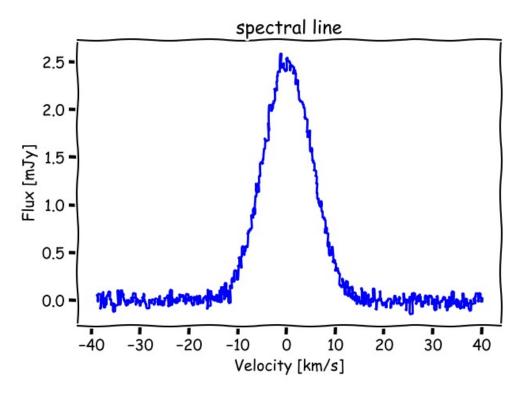
Data Disp	lay Options
dis	play axes
hid	lden axes
bas	ic settings
posit	ion tracking
ax	kis labels
axis lal	bel properties
	am ellipse
col	or wedge
display color wedge?	Yes 🧯
wedge thickness	1
wedge label space	1
character size	1.2
wedge orientation	vertical
axis label	
axis label color	foreground
	14

Global Color Settings

auto apply

Channel maps

2. TARLO STORAGE AND A STRONG

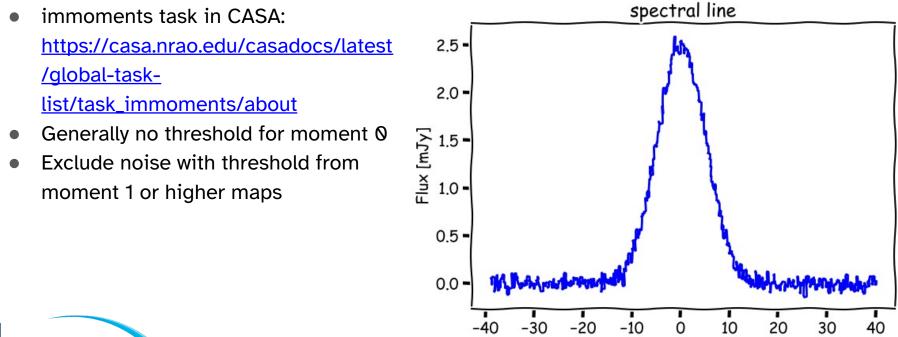

	Viewer	Print Manager		
Working Directory: /Use	rs/hygate/Allegro/20	022_11_science_day	/Presentations/Analysi	is_scrip
Current Canvas Size: 69	96 x 659 pixels.			
Output file			channel_map	
[PS/PDF] Output media			A4	٢
[PS/PDF] Orientation			portrait	0
[PS/PDF] Resolution (dpi)		150		
[Image] Output size (pix	els)		-1 🗘 x -1	•
[Image] Output size mul	tiplicative factor		1.00	
PC Sa	/e	Print	Dismiss	

- Click the printer button
- Select "pdf" (or your favourite format) from the drop down menu in the bottom left
- The same process works for any image in casa
- But you can make nicer plots with e.g. matplotlib!

• Moments allow us to characterise a spectral line

THERE AND AND AND AND A SHOW

- -1: the mean value of the spectrum
- 0: the integrated value of the spectrum
- 1: the intensity weighted coordinate used for velocity fields
- 2: the intensity weighted dispersion of the coordinate used for velocity dispersion fields
- **3:** the median of the spectrum
- 4: the median velocity
- 5: the standard deviation about the mean of the spectrum
- 6: the root mean square of the spectrum
- 7: the absolute mean deviation of the spectrum
- 8: the maximum value of the spectrum
- 9: the coordinate of the maximum value of the spectrum
- **10**: the minimum value of the spectrum
- 11: the coordinate of the minimum value of the spectrum

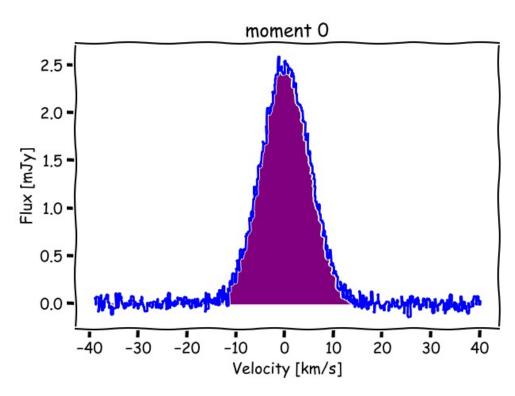

T. THERE AN ARCOMMENT AND A STADIO

- -1: the mean value of the spectrum
- 0: the integrated value of the spectrum
- 1: the intensity weighted coordinate used for "velocity" fields
- 2: the intensity weighted dispersion of the coordinate used for "velocity dispersion" fields
- 3: the median of the spectrum
- 4: the median velocity
- 5: the standard deviation about the mean of the spectrum
- 6: the root mean square of the spectrum
- 7: the absolute mean deviation of the spectrum
- 8: the maximum value of the spectrum
- 9: the coordinate of the maximum value of the spectrum
- **10**: the minimum value of the spectrum
- 11: the coordinate of the minimum value of the spectrum

EUROPEAN ARC ALMA Regional Centre || Allegro

7. TARAO ARCA ARCA AR A RADOR

Velocity [km/s]

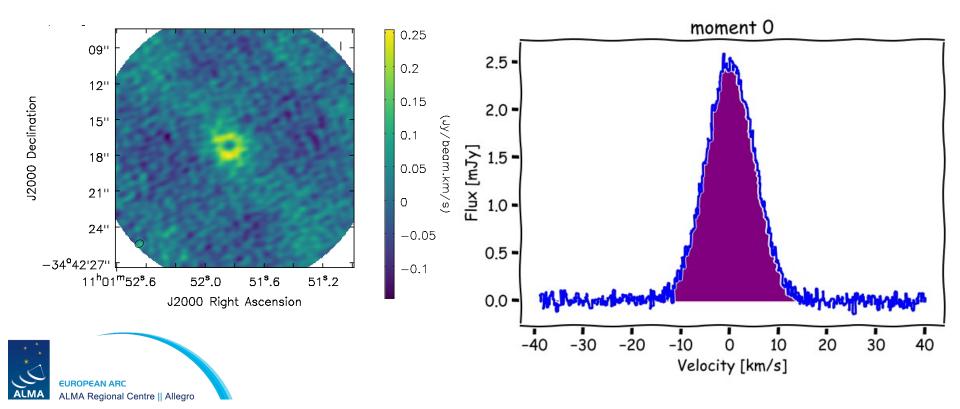

Moment 0 – integrated flux

+ TARLO STOR ALTR. A Thomas

- CASA <1>: immoments(axis='spec', imagename='my_image', moments=[0], outfile='my_mom0')
- Normally no threshold

$$M_0 = \Delta v \sum I(v)$$

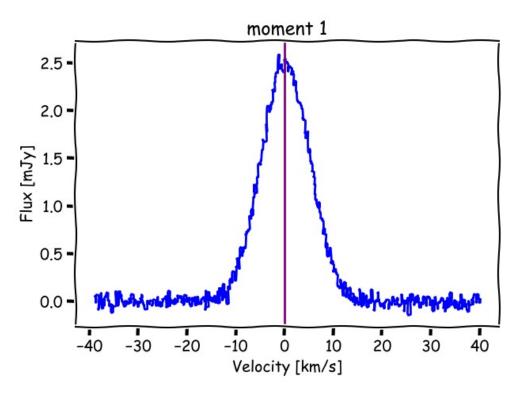
Exercise – Run the script


A TAR 40 STORAGE AND A SADA

- CASA <1>: mysteps = [2]
- CASA <2>: execfile('analysis_tools_script.py')
- CASA <1>: mysteps = [3]
- CASA <2>: execfile('analysis_tools_script.py')

Moment 0 – integrated flux

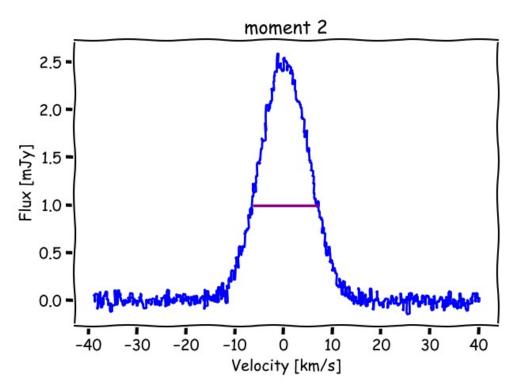
T TATAO STORAGE AND A TANK


Moment 1 - Velocity

+ TARLO STORAGE AND A SMONT

- CASA <1>: immoments(axis='spec', imagename='my_image', includepix= [3 * sigma, maxpix] moments=[1], outfile='my_mom1')
- use "includepix" for thresholding. E.g. from 3σ to the maximum pixel value

$$M_1 = \frac{\sum v I(v)}{\sum I(v)}$$


Moment 2 - Velocity dispersion

+ TARLA STORAGE AND A Show

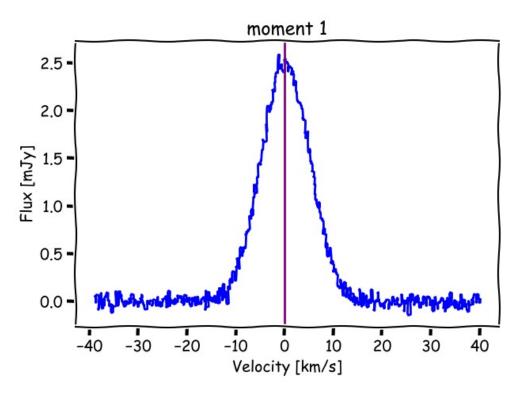
- CASA <1>: immoments(axis='spec', imagename='my_image', includepix= [3 * sigma, maxpix] moments=[2], outfile='my_mom2')
- use "includepix" for thresholding. E.g.
 from 3σ to the maximum pixel value

$$M_{2} = \sqrt{\frac{\sum (v - M_{1})^{2} I(v)}{\sum I(v)}}$$

Exercise – Run the script

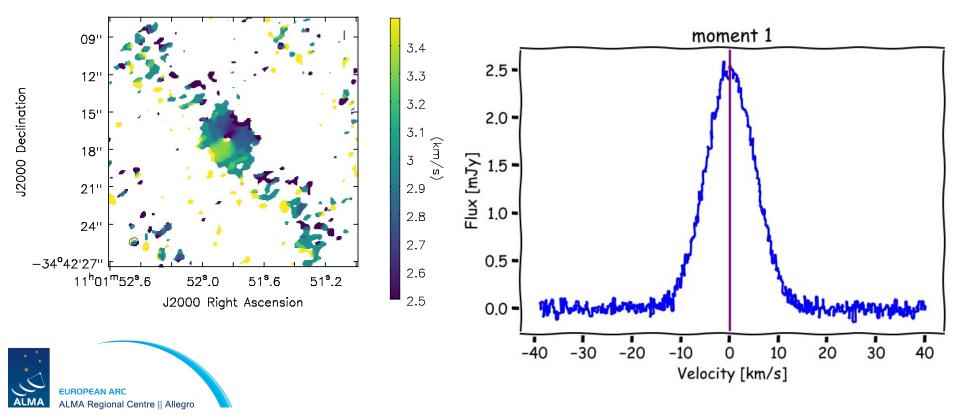
T TATAO STOP AND AND A THOMAS

- CASA <1>: mysteps = [4]
- CASA <2>: execfile('analysis_tools_script.py')


Moment 1 - Velocity

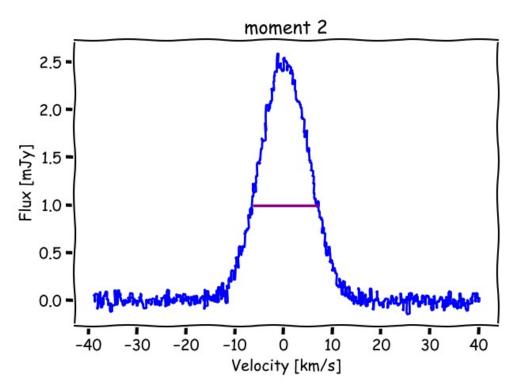
+ TARLO STORAGE AND A SMONT

- CASA <1>: immoments(axis='spec', imagename='my_image', includepix= [3 * sigma, maxpix] moments=[1], outfile='my_mom1')
- use "includepix" for thresholding. E.g. from 3σ to the maximum pixel value


$$M_1 = \frac{\sum v I(v)}{\sum I(v)}$$

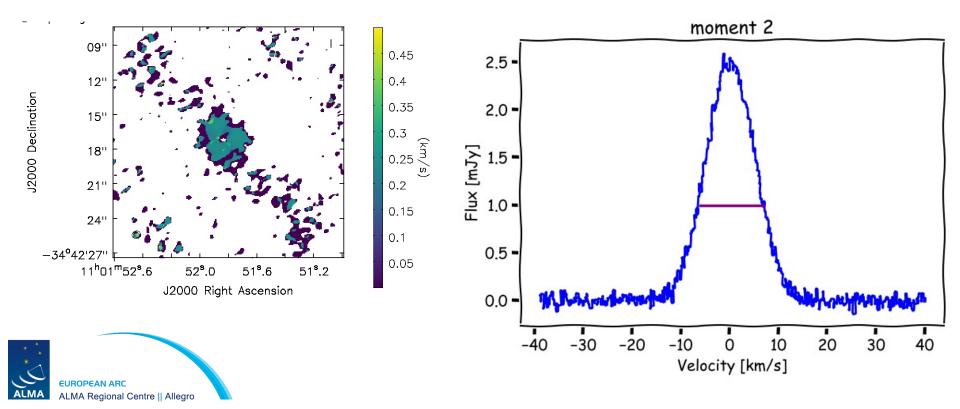
Moment 1 - Velocity

T. TATAO AT CONTRACTOR A TANK


Moment 2 - Velocity dispersion

+ TARLA STORAGE AND A Show

- CASA <1>: immoments(axis='spec', imagename='my_image', includepix= [3 * sigma, maxpix] moments=[2], outfile='my_mom2')
- use "includepix" for thresholding. E.g.
 from 3σ to the maximum pixel value


$$M_{2} = \sqrt{\frac{\sum (v - M_{1})^{2} I(v)}{\sum I(v)}}$$

Moment 2 - Velocity dispersion

T. TARAO ARCONTING ARTIN & TADAT

Exportfits

- Export your image to a .fits file for use with other software (e.g. ds9, python...)
- CASA <1>: exportfits(imagename='twhya_n2hp.image',
- ...: fitsimage='twhya_n2hp.image' + '.fits')

Exercise – Run the script

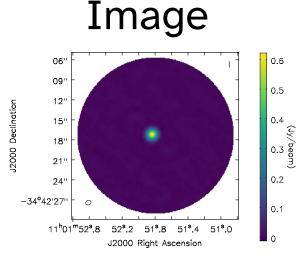
- CASA <1>: mysteps = [5]
- CASA <2>: execfile('analysis_tools_script.py')

Modelling - imfit

THERE AND AND AND A STRONG

CASA <15>: imfit(imagename="sis14_twhya_cont.image",
 ...: region="imfit_region.crtf", logfile="contin_fit.log",
 ...: model="sis14_twhya_cont.image.imfit",
 ...: residual="sis14_twhya_cont.image.fitresid")

Exercise – Run the script


T TATAO STOP AND AND A THOMAS

- CASA <1>: mysteps = [6]
- CASA <2>: execfile('analysis_tools_script.py')

Modelling – assessing results

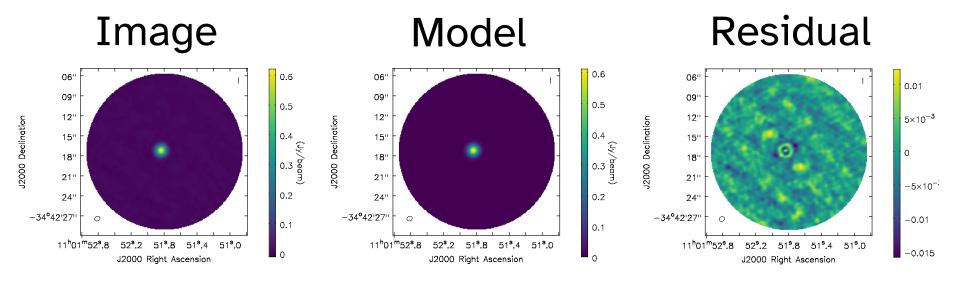
THERE AND AND AND A THOMAS



Let's check our model

Modelling – assessing results

+ TARLO STOP ALTA HAND A Show

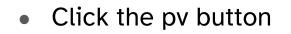


Looks like a reasonable fit... but let's check the residuals...

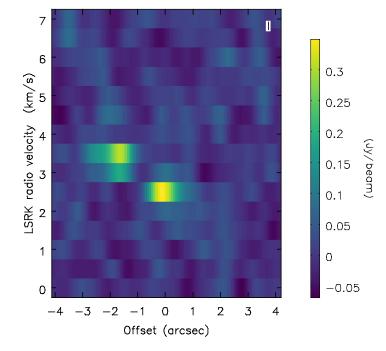
Modelling – assessing results

+ TARAO AND ALTA ANTA A Show I

EUROPEAN ARC ALMA Regional Centre || Allegro Position-Velocity (P-V) Diagrams – Interactive


+ TARLO STORAGE AND A STORAGE

- CASA <1>: mysteps = [7]
- CASA <**2**>:


EUROPEAN ARC

ALMA Regional Centre || Allegro

execfile('analysis_tools_script.py')

Position-Velocity (P-V) Diagrams – automatic

+ TARLO STORAGE AND A TARLAS ADDATE

- CASA <1>: mysteps = [8]
- CASA <2>: execfile('analysis_tools_script.py')

Re-gridding images – run the script

7. TARAO STORAGE AND A STRONG

- CASA <1>: mysteps = [9]
- CASA <2>: execfile('analysis_tools_script.py')
- imregrid(imagename='twhya_n2hp.image',
- template='GALACTIC',
- output='twhya_n2hp.image' + '.galactic')

Bonus - Movies

A TARAO STOR AND A SADAT

- ds9 my_cube.fits -cmap viridis -scale limits min max -movie slice gif movie.gif –exit
- <u>http://ds9.si.edu/doc/ref/command.html#movie</u>
- If this fails update DS9, or for a worse-looking movie try:
 - -cmap bb
 - -movie slice movie.mpeg

Exercise – Run the script

T TATAO STOP AND AND A THOMAS

- CASA <1>: mysteps = [10]
- CASA <2>: execfile('analysis_tools_script.py')

Where next? CASA guides

https://casaguides.nrao.edu/index.php?title=First_Look_at_Image_Analysis_CASA_6.5.4

• Short tutorial on image analysis in CASA

+ ARA AN ARAMARA ARAMARA

 page
 discussion
 view source
 history

 First Look at Image Analysis CASA 6.5.4

 (Redirected from First Look at Image Analysis)

log in

- Contents [hide]
 About this Guide
 Statistics
 Moments
- 4 Export FITS images

About this Guide

Last checked on CASA Version 6.5.4

This guide features CARTA , the "Cube Analysis and Rendering Tool for Astronomy," which is the new NRAO visualization tool for images and cubes. The CASA viewer (imview) has not been maintained for a few years and will be removed from future versions of CASA. We strongly recommend using CARTA, as it provides a much more efficient, stable, and feature rich user experience. A comparison of the CASA viewer and CARTA, as well as instructions on how to use CARTA at NRAO, is provided in the CARTA section of the CASA docs].

Where next? Itrain

T TARAO STORAGE AND A SADAT

https://almascience.eso.org/tools/eu-arc-network/i-train

- Video tutorials for some packages, for example:
 - I-TRAIN #3: UVMultiFit
 - I-TRAIN #9: Stacking spectra in the image domain with LineStacker

Where next? Allegro software list

T TAR 20 STOR AND AND A SHORT

- List of ALMA-related software tools hosted by allegro.
- Will be announced soon sign up to our newsletter to stay informed
- Newsletter: <u>http://bit.ly/AllegroNews</u>

Resources

7. TAR 20 STOR AND AND A THOMAN

- CASA documentation: <u>https://casa.nrao.edu/casadocs/latest/</u>
- CASA guides: <u>https://casaguides.nrao.edu/index.php?title=First_Look_at_Image_Analysis</u>
- CASA cookbook: https://casa.nrao.edu/Doc/Cookbook/casa_cookbook.pdf
- Download CASA: https://casa.nrao.edu/casa_obtaining.shtml
- Download DS9: <u>https://sites.google.com/cfa.harvard.edu/saoimageds9</u>
- EU arc network tools: <u>https://almascience.eso.org/tools/eu-arc-network-tools</u>
- Allegro maintains a number of analysis tools on our computers
- Contact us at <u>alma@strw.leidenuniv.nl</u> with questions or requests for assistance with your alma data

ALMA Regional Centre || Allearo