ALMA Data Calibration

Violette Impellizzeri

ALMA Data Reduction Training Day

ALMA Local Expertise Group (Allegro)

Leiden Observatory - 27/11/2023

Calibration basics

T TATAO STOP AND AND A THOMAS

Why do we need to calibrate our data?

What are the calibration steps?

How do I know that the calibration was successful?

Ideal interferometer

This 20 Stor Alter the 4 show the

+ AAA ACTING AND A THOMAS

EUROPEAN ARC

ALMA Regional Centre || Allegro

Real case: possible error sources

- TARAO STORAGE AND A STRONG

More sources of error

Antenna-basec

baseline-base

+ TARLO STOP ALTA HATTA A THOMAS

- Atmospheric attenuation
- Radio "seeing"
- Variable pointing offsets
- Variable delay offsets
- Electronic gain changes
- Electronic delay changes
- Electronic phase changes
- Radiometer noise
- Correlator malfunctions
- Most Interference signals

Radio interferometry measurement equation

THAT A STORAGE WAR A THOMAS

Assumptions: Calibration parameters are antenna based. Time and frequency effects are independent

Calibration solves for each parameter (when required)

Real case

Target

A ALMA Regional Centre || Allegro

Which sources do we observe?

THERE AND AND ALTER A THOM

- Bandpass calibrator (BC): Quasar (strong, point-like source)
 can be the same
- Flux calibrator (FC):
- Quasar (needs flux density monitoring) OR Solar System Object (needs flux density model)
- Gain calibrator (GC): Point sourc
- Target (T)

A ALMA Regional Centre || Allegro

Point source close to target on sky

BC FC GC T GC T GC T GC T GC T GC

time

0 र सिर्द्र के सिर्द्र संस्थित म दे फिल्म् दिन

Phase-referencing

Calibrator properties (ideal case)

THERE AND AND AND A THOMAS

Point source:

- unresolved on all baselines → amplitude is the same on all baselines
- All sky brightness comes from single point → phases are flat/zero as function of baseline and time
- Quasars have flat spectra or known spectral indices

Bright sources to achieve high signal-tonoise ratios in small on-source time!

Three calibration steps

Primary calibration:

- Remove effects of the instrument
 - Bandpass; variation in receiver noise (Tsys); effects of shadowing; antenna positions

That to see that the we how

Secondary calibration:

- Remove effect of the atmosphere
 - Atmospheric variability (phase); atmospheric attenuation as function of time (Tsys)
- Scale to correct flux (flux calibrator)

Self-calibration:

• Remove residual time dependent corrupting effects (target)

Primary calibration - bandpass calibrator

+ TARAO ATO ALAR HATA IN TARAONA

Secondary calibration - flux calibrator

T. TARLO STORMAR HERE & Show

Visibility amplitudes from correlator have arbitrary scaling.

Use strong, point-like source with known flux density or solar system object with well-known flux density model to convert these amplitudes into physically meaningful values

Apply scaling factors to other sources using, e.g. setJy and fluxscale in CASA

Secondary calibration - gain calibrator

+ TARLO STOPPEN HERE A TOPPEN

ALMA Regional Centre || Allegro

EUROPEAN ARC

uncalibrated Bandpass Phase calibration Self-calibration

Secondary calibration - phase-referencing

+ TARLO STORAGE AND A STORAGE

Which source gets which calibration solution?

Calibrator Calibration "Table"	BP CAL	FLUX CAL	PHASE CAL	TARGET
FLUX SCALING	FLUX CAL (Scaled in fluxscale)	FLUX CAL (Model in setJy)	FLUX CAL (Scaled in fluxscale)	
BANDPASS	BP CAL	BP CAL	BP CAL	BP CAL
PHASE	BP CAL (short interval time solutions)	FLUX CAL (short time interval solutions)	PHASE CAL (long time interval solutions	PHASE CAL (long time interval solutions
AMPLITUDE	BP CAL (short interval time solutions)	FLUX CAL (short time interval solutions)	PHASE CAL (long time interval solutions	PHASE CAL (long time interval solutions

T TATA A STORAGE AND A STORAGE

EUROPEAN ARC ALMA Regional Centre || Allegro

Manual vs pipeline calibration

Weblog review

Manual calibration

T. THE AN AND ALTER HE WE READ

step title = {0: 'Import of the ASDM',

- 1: 'Fix of SYSCAL table times',
- 2: 'listobs',
- 3: 'A priori flagging',
- 4: 'Generation and time averaging of the WVR cal table',
- 5: 'Generation of the Tsys cal table',
- 6: 'Generation of the antenna position cal table',
- 7: 'Application of the WVR, Tsys and antpos cal tables',
- 8: 'Split out science SPWs and time average',
- 9: 'Listobs, clear pointing table, and save original flags',
- 10: 'Initial flagging',
- 11: 'Putting a model for the flux calibrator(s)',
- 12: 'Save flags before bandpass cal',
- 13: 'Bandpass calibration',
- 14: 'Save flags before gain cal',
- 15: 'Gain calibration',
- 16: 'Save flags before applycal',
- 17: 'Application of the bandpass and gain cal tables',
- 18: 'Split out corrected column'}

if 'applyonly' not in globals(): applyonly = False print 'List of steps to be executed ...', mysteps print 'global variable mysteps not set.' thesteps = range(0,len(step title))

Pipeline calibration - Weblog

7. TARA AN ARTA ARTA ARAMAN

casa_pipescript.py

casa_piperestorescript.py

weblog :

gunzip and untar

weblog.tar.gz

cd weblog-date/html/

Observation Overview		Pipeline Summary	
Project	uid://A001/X12ea/X1a5	Pipeline Version	42254M (Pipeline-CASA54-P1-B) (documentation)
Principal Investigator	Itmaud	CASA Version	5.4.0-70 (environment)
OUS Status Entity id	uid://A001/X133d/Xd0f	Pipeline Start	2019-08-09 00:07:48 UTC
Observation Start	2019-07-09 02:14:11 UTC	Execution Duration	4 days, 11:40:39
Observation End	2019-07-09 04:42:49 UTC		

Measurement Set End RMS Receivers Num Antennas Start On Source Max Size Observing Unit Set Status: uid://A001/X133d/Xd0f Scheduling Block ID: uid://A001/X133d/Xd0b Session: session_1 uid A002 Xde9c3e X18f9.ms ALMA Band 6 44 2019-07-09 03:25:58 265.7 GB 2019-07-09 02:14:11 0:37:39 149.1 m 13.9 km 4.9 km uid___A002_Xde9c3e_X214a.ms ALMA Band 6 44 2019-07-09 03:28:30 2019-07-09 04:42:48 0:37:34 149.1 m 13.9 km 4.9 km 267.1 GB

Measurement set overview

+ TARLO STORAGE AND A STORAGE

Overview of 'uid A002 Xde9c3e X18f9.ms'

Observation Execution Time

Start Time	2019-07-09 02:14:11
End Time	2019-07-09 03:25:58
Total Time on Source	1:01:44
Total Time on Science Target	0.37:39
LISTOBS OUTPUT	

Spatial Setup

Science Targets	'W33A'
Calibrators	'J1825-1718', 'J1830-1606' and 'J1924-2914'

Antenna Setup

Min Baseline	149.1 m
Max Baseine	13.9 km
Number of Baselines	946
Number of Antennas	44

All Bands Science Bands

PWV

PWV plot

'ALMA Band 6'

'ALMA Band 6' and 'WVR'

Sky Setup

Spectral Setup

Min Elevation	55.24 degrees
Max Elevation	83.91 degrees

Weather

Weather plot

Scans

Intent vs time

+ THE RO STORE THE ALL REPORTS

Measurement set overview

+ TARLA STORAGE AND A STORAGE

Overview of 'uid___A002_Xde9c3e_X18f9.ms'

Observation Execution Time

Start Time	2019-07-09 02:14:11
End Time	2019-07-09 03:25:58
Total Time on Source	1:01:44
Total Time on Science Target	0.37:39
LISTOBS OUTPUT	

Spatial Setup

 Science Targets
 'W33A'

 Calibrators
 'U1825-1718', 'U1830-1606' and 'U1924-2914'

Antenna Setup

Min Baseline	149.1 m
Max Baseline	13.9 km
Number of Baselines	946
Number of Antennas	44

Weather

Weather plot

Scans

Spectral Setup

ll Bands	'ALMA Band 6' and 'WVR'
cience Bands	'ALMA Band 6'

Sky Setup

Intent vs Time

Track scan intent vs time

Min Elevation	55.24 degrees
Max Elevation	83.91 degrees

Precipitable water vapour

THAT A STORAGE WAR A THOMAS

ALMA Regional Centre || Allegro

Measurement set overview

+ TARA AN ALTA HATA A THOMAS

Overview of 'uid A002 Xde9c3e X18f9.ms'

Observation Execution Time

LISTOBS OUTPUT	
Total Time on Science Target	0:37:39
Total Time on Source	1:01:44
End Time	2019-07-09 03:25:58
Start Time	2019-07-09 02:14:11

Spatial Setup

Science Targets 'W33A' Calibrators 'J1825-1718', 'J1830-1606' and 'J1924-2914'

Antenna Setup	
Min Baseline	149.1 m
Max Baseline	13.9 km
Number of Baselines	946
Number of Antennas	44

Spectral Setup

Intent vs Time

Track scan intent vs time

All Bands	'ALMA Band 6' and 'WVR'
Science Bands	'ALMA Band 6'

Sky Setup

PWV

PWV plot

Min Elevation	55.24 degrees
Max Elevation	83.91 degrees

Weather

Weather plot

Scans

Antenna positions

THERE AND THE AREA A SHORT

UV coverage

Initial UV coverage for uid___A002_Xde9c3e_X18f9.ms

2. TARLO STOPPEN HERE A STOPPEN

Pipeline calibration - Weblog

Warnings & Errors / Flagging Summary

Home By Topic By Task

2018.1.00458.S

Observation Overview

Pipeline Summary

A TRACE STOCKED AND A TRACE

Project	uid://A001/X12ea/X1a5	Pipeline Version	42254M (Pipeline-CASA54-P1-B) (documentation)
Principal Investigator	Itmaud	CASA Version	5.4.0-70 (environment)
OUS Status Entity id	uid://A001/X133d/Xd0f	Pipeline Start	2019-08-09 00:07:48 UTC
Observation Start	2019-07-09 02:14:11 UTC	Execution Duration	4 days, 11:40:39
Observation End	2019-07-09 04:42:49 UTC		

Observation Summary

				Time (UTC)	Baseline Len							
	Measurement Set	Receivers	Num Antennas	Start	End	On Source	Min	Max	RMS	Size		
Observing Unit Set Status: uid://A001/X133d/Xd0f Scheduling Block ID: uid://A001/X133d/Xd0b												
Session_1												
	uidA002_Xde9c3e_X18f9.ms	ALMA Band 6	44	2019-07-09 02:14:11	2019-07-09 03:25:58	0:37:39	149.1 m	13.9 km	4.9 km	265.7 GB		
	uidA002_Xde9c3e_X214a.ms	ALMA Band 6	44	2019-07-09 03:28:30	2019-07-09 04:42:48	0:37:34	149.1 m	13.9 km	4.9 km	267.1 GB		

EUROPEAN ARC ALMA Regional Centre || Allegro

Warnings and Errors

+ ARAO AND ARA ARADAR

Warnings and Errors

Stage	Task	Туре	Message
7	hifa_tsysflag	Warning	flag edgechans - uidA002_Xde9c3e_X18f9.ms iteration 1 raised 12 flagging commands
7	hifa_tsysflag	Warning	flag birdies - uidA002_Xde9c3e_X18f9.ms iteration 1 raised 4 flagging commands
7	hifa_tsysflag	Warning	flag edgechans - uidA002_Xde9c3e_X214a.ms iteration 1 raised 12 flagging commands
7	hifa_tsysflag	Warning	flag birdies - uidA002_Xde9c3e_X214a.ms iteration 1 raised 4 flagging commands
9	hifa_wvrgcalflag	QA Warning	RMS improvement was 1.24 for uidA002_Xde9c3e_X18f9.ms
12	hifa_bandpassflag	Warning	Evaluation of flagging heuristics for uidA002_Xde9c3e_X18f9.ms raised total of 5 flagging command(s)
12	hifa_bandpassflag	Warning	uidA002_Xde9c3e_X18f9.ms - for intent BANDPASS (field J1924-2914) and spw 25, the following antennas are fully flagged: DA44
12	hifa_bandpassflag	Warning	uidA002_Xde9c3e_X18f9.ms - for intent BANDPASS (field J1924-2914) and spw 27, the following antennas are fully flagged: DA44

Flagging summary

THERE AND AND AND AND AN A PROPERTY

Flagging percentages for Source name: J1830-1606, Intents: WVR,CHECK

spw	DA41	DA42	DA43	DA44	DA45	DA46	DA47	DA49	DA50	DA51	DA52	DA53	DA55	DA56	DA58	DA61	DA62	DA63	DA64	DA65	DV01	DV04	DV06	DV
25	4.72	4.72	5.08	100.00	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.7
27	4.88	4.88	5.13	100.00	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88	5.77	4.88	4.88	4.88	4.88	4.88	5.47	4.88	4.88	8.€
29	4.70	4.70	4.70	100.00	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.7
31	4.70	4.70	4.70	100.00	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.70	4.7

Flagging percentages for Source name: J1825-1718, Intents: WVR, PHASE

spw	DA41	DA42	DA43	DA44	DA45	DA46	DA47	DA49	DA50	DA51	DA52	DA53	DA55	DA56	DA58	DA61	DA62	DA63	DA64	DA65	DV01	DV04	DV06	DV
25	9.16	7.81	7.78	100.00	8.86	9.24	9.17	9.34	8.31	6.07	8.87	8.17	8.11	6.94	7.85	7.02	6.95	6.02	7.09	9.52	5.74	5.74	5.74	5.7
27	9.32	7.96	7.84	100.00	9.01	9.40	9.33	9.49	8.46	6.23	9.03	8.32	8.26	7.10	8.87	7.18	7.11	6.18	7.25	9.67	6.49	5.90	5.90	9.€
29	11.34	9.64	9.61	100.00	10.69	11.42	11.35	11.51	10.48	8.25	10.70	10.34	10.28	9.12	10.02	9.20	9.13	8.19	9.27	11.69	7.91	7.91	7.91	7.5
31	9.14	7.79	7.42	100.00	8.84	9.22	9.15	9.32	8.29	6.05	8.85	8.15	8.09	6.92	7.83	7.00	6.93	6.00	7.07	9.50	5.72	5.72	5.72	5.7

EUROPEAN ARC

Pipeline calibration - Weblog

Warnings & Errors / Flagging Summary

Home By Topic

Dic By Task Task List

Observation Overview

Pipeline Summary

2018.1.00458.S

+ TARLO STORAGE AND A STORAGE

Project	uid://A001/X12ea/X1a5	Pipeline Version	42254M (Pipeline-CASA54-P1-B) (documentation)
Principal Investigator	Itmaud	CASA Version	5.4.0-70 (environment)
OUS Status Entity id	uid://A001/X133d/Xd0f	Pipeline Start	2019-08-09 00:07:48 UTC
Observation Start	2019-07-09 02:14:11 UTC	Execution Duration	4 days, 11:40:39
Observation End	2019-07-09 04:42:49 UTC		

Observation Summary

				Time (UTC)	Baseline Len						
	Measurement Set	Receivers	Num Antennas	Start	End	On Source	Min	Max	RMS	Size	
Observing Unit Set Status: uid://A001/X133d/Xd0f Scheduling Block ID: uid://A001/X133d/Xd0b											
Session_1											
	uidA002_Xde9c3e_X18f9.ms	ALMA Band 6	44	2019-07-09 02:14:11	2019-07-09 03:25:58	0:37:39	149.1 m	13.9 km	4.9 km	265.7 GB	
	uidA002_Xde9c3e_X214a.ms	ALMA Band 6	44	2019-07-09 03:28:30	2019-07-09 04:42:48	0:37:34	149.1 m	13.9 km	4.9 km	267.1 GB	

EUROPEAN ARC ALMA Regional Centre || Allegro

Calibration tasks

The to stor after the to how the

Task		QA Score		Duration
1. hifa_importdata: Register measurement sets with the pipeline			1.00	0:46:07
2. hifa_flagdata: ALMA deterministic flagging			1.00	3:18:59
3. hifa_fluxcalflag: Flag spectral features in solar system flux calibrators			1.00	0:00:05
4. hif_rawflagchans: Flag channels in raw data			1.00	0:49:25
5. hif_refant: Select reference antennas			1.00	0:04:13
6. h_tsyscal: Calculate Tsys calibration			1.00	0:13:06
7. hifa_tsysflag: Flag Tsys calibration			0.99	0:17:32
8. hifa_antpos: Correct for antenna position offsets	Nonzero antenna position offsets		0.90	0:00:12
9. hifa_wvrgcalflag: Calculate and flag WVR calibration	1.24x improvement		0.62	1:59:20
10 hif Iowaainflaa: Flad antennas with low dain			1 00	1.22.02
		\bigtriangleup		Δ

A CUROPEAN ARC ALMA Regional Centre || Allegro

Tsys

T. THE RO STOPPING THE READER

6. h_tsyscal: Calculate Tsys calibration

Tsys - sensitivity of each antenna with time (atmosphere & receivers)

Correct for sky and receiver noise/variation

TOPO USB Frequency (GHz) uid___A002_Xde9c3e_X18f9.ms_ObsDate=2019-07-09_plotbandpass v1.102 = 2018/01/21 14:45:41

Water vapour radiometer correction

T. TAR 40 STOR AND AND A TAPAT

9. hifa_wvrgcalflag: Calculate and flag WVR calibration

Variations in the amount of water vapour

lead to atmospheric phase fluctuations

(very short timescales < 1 min)

Phase noise should decrease

—> If not, pipeline will not apply the correction

Bandpass calibration

T THE ROAD AND A REAL AND A REAL AND AND A

Bandpass calibration

T. TATAO AT CONTRACT AND A SALOWER

Flux calibration

THE 20 STORE WITH A 2 MONTH

Flux consistency

T. TATAO AT CONTRACTOR A TANK

Phase calibration

T. TAR 20 STORAGE AND A TROPAN

16. hifa_timegaincal: Gain calibration

Phase and amplitude corrections to be applied to the target

Applying all calibrations

THAT A STORAGE WAR A THOMAS

17. hif_applycal: Apply calibrations from context

EUROPEAN ARC

A ALMA Regional Centre || Allegro

Phase calibration

- ARAO STOP ALEA HARA A PLOOP

The target

+ TARLO RECORDER AND A SHOWER

EUROPEAN ARC ALM

Tweak the pipeline

+ TATAO ATO ALAR HATA & Showing

Extra flagging needed for the atmospheric line

Add extra flagging in calibration/*flagtemplate.txt and re-run casapipescript.py

More details at:

"Tweaking the pipeline script" by R. Miura (NAOJ)

Need help?

If you have any questions or need help with your data, please contact us at

alma@strw.leidenuniv.nl

We are happy to help!

Self - calibration

A short intro!

- ALMA nods between phase-ref and target every 0.5 to 10 min
- Phase-ref target separation ~1° 10°
 - Faster, closer, at high frequencies
- Sky changes in time and direction
- Residual errors in target phase and amplitudes after applying phase-ref corrections
- Could be solved by a closer phase-reference
- The target itself!
 - If it is bright enough

Sky almost, not quite the same

Telescope nods between sources

After self-cal images errors remain

THAT A STORE THAT IS A THOMAS

Phase errors:

- emission is smeared astrometry degraded
- visibility amplitudes are decorrelated \rightarrow flux density reduced
- weak emission undetectable
- excess noise
- anti-symmetric artefacts

Amplitude errors:

- spotty of stripy emission
- flux density lower than expected
- symmetric artefacts
- noise increased

From CASAGUIDE On NGC3256

Phase-reference solutions positive & negative artefacts - **phase**-errors dominate

Self-calibration phase only

Symmetric artefacts remain - amp. errors

Self-calibration phase followed by amplitude

Self calibration – a short short summary

T. TARA AN ANTAL ANTAL AN EMONY

• Self-calibration the **target ITSELF** to better calibrate the antenna-based complex gains (i.e., amplitudes and phases) as a function of time.

• By creating a model of the target, you can calibrate the target itself. You can get a model of your source through an initial image of your source.

• There are two types of self-calibration: 1) Phase and 2) Amplitude & Phase

The "self-cal" cycle

T THE AN ACCORDENCE AND A THOMAS

Sensitivity considerations

THERE AND THE AREA A SHORT

For phase self-calibration:

Need to detect the target with a S/N > 40 in a solution time (solint) for 40 ALMA antennas

Solint's vary from scan length (~ mins), or integration time (~ secs), or longer

How to estimate your chances of success :

- measure rms in emission-free region of your map ; measure peak in the map \rightarrow Peak/rms is your S/N

If dominated by extended emission, estimate the flux density on the longer baselines (by plotting the uv-data). If the majority of baselines cannot "see" the bulk of the emission (i.e. emission is resolved out) at a S/N of about 3, the self-cal will most likely fail.

For amplitude self-calibration:

ALMA Regional Centre || Allearo

Need to detect the target with a S/N > 100 in a solution time (solint)

Amplitude corrections are more subject to deficiencies in the model image.

For more details...

Please go to I-TRAIN....

https://almascience.nrao.edu/tools/eu-arc-network/i-train

https://home.strw.leidenuniv.nl/~alma/doc/allegroDRC/selfcal.html

I-TRAIN #6: Improving image fidelity through self-calibration 25 May 2021, 11:00 CEST

Materials:

- training video (YouTube)
- presentation Self-Calibration Basic
- presentation Self-Calibration Advanced
- Q&A session
- instructions
- dataset and script (size: 1.8 GB!)

Tutors: Emily Moravec, Anita Richards, Andrés Pérez-Sánchez, MCarmen Toribio

EUROPEAN ARC ALMA Regional Centre || Allegro In this session you will learn how to self-calibrate your interferometric images to improve their image fidelity. In particular, you will learn criteria to decide whether to self-calibrate, how to choose parameter values - and when to stop - and thus, how to improve the image dynamic range and bring faint details out of the noise.

Noise per antenna

• Each antenna has (N-1) baselines

• See previous talks

Choosing the solution interval - phase Start cautiously, e.g. scan length, to avoid freezing-in imperfect model

• Can estimate analytically integration time giving required S/N per antenna

• Degrees of freedom also reduced by refant, arbitrary origin of phase

 $\circ \quad \begin{array}{l} S = \text{peak flux in Jy/beam, ideal } \sigma_{\text{rms}}, N \text{ antennas} \\ \sigma_{\text{rms}} \propto \frac{T_{\text{sys}}}{\sqrt{N(N-1)/2 \times \Delta \nu \times \Delta t}} \end{array}$

• Δv total bandwidth (used in image), Δt total time on target

• Can compare S/N to optimise solint (also see VLA self-calibration CASA guide)

Initial actual image σ_{rms} higher, atmospheric as well as thermal noise

• Actual σ_____should decrease as self-calibration progresses

Maybe harder if sensitivity or signal changes a lot with frequency or baseline length

T. THE AN ANTIME THE AT STRUCTURE

Before the session, attendees will be requested to do some preparations in order to be able to follow this tutorial in full. The preparations will consist of downloading a dataset and installing a compatible CASA version and instructions on how to do so will be made available on the <u>Science Portal</u> at least a week in advance. Presentation slides will be made available in the <u>Science Portal</u> the day before the session.

The duration of this training session will be about two hours and will include a live demo and an interactive Q&A. The first hour will be an interactive tutorial and demonstration. The second hour will be devoted to Q&A, advanced techniques and special cases. For questions do not hesitate to contact us at contact@nordic-alma.se.

Thank you for your attention !

THERE AND AND AND AND A SHOWN

