

ALMA Data Reduction Training Day, 27 Nov. 2023

Imaging

Ko-Yun (Monica) Huang ALMA Local Expertise Group (Allegro)

Software used in this tutorial

THERE AND AND AND A SHOW

- This tutorial uses **CASA 6.6.0**
- Obtain CASA at casa.nrao.edu
 - CASA 6.6 as "Latest Release"
- CASA documentation & general help available in the CASA Docs: <u>casadocs.readthedocs.io</u>
- CASA Paper: "CASA, the Common Astronomy Software Applications for Radio Astronomy," the CASA Team <u>arXiv: 2210.02276</u>
- AnalysisUtils package, check Analysis Utils CASA Guide for more information: https://casaguides.nrao.edu/index.php/Analysis_Utilities https://casaguides.nrao.edu/index.php/Analysis_Utilities https://casaguides.nrao.edu/index.php/Analysis_Utilities https://casaguides.nrao.edu/index.php/Analysis_Utilities https://casaguides.nrao.edu/index.php/Analysis_Utilities casa <x>:
 https://casaguides.nrao.edu/index.php/Analysis_Utilities

CASA <x>: import analysisUtils as au

Data used in this tutorial

* TARAO STORAGE AND A STORAGE

- TW Hya from the "First Look at Line Imaging CASA 6" guide, $N_2H^+J=4-3$
- ALMA Project 2011.0.00340.S, "Searching for H2D+ in the disk of TW Hya v1.5", PI Chunhua Qi

tclean: CASA task for Radio Interferometric Image Reconstruction

- ARAO ARCONTRACTOR A STRONG

CASA <x>: inp tclean</x>						
vis	=	11	#	Name of input visibility file(s)		
selectdata	=	True	#	Enable data selection parameters		
• • •						
specmode	=	'mfs'	#	Spectral definition mode		
• • •						
gridder	=	'standard'	#	Gridding options		
•••						
deconvolver	=	'hogbom'	#	Minor cycle algorithm		
• • •						
weighting	=	'natural'	#	Weighting scheme		
• • •						
niter	=	0	#	Maximum number of iterations		
•••						
usemask	=	'user'	#	Type of mask(s) for deconvolution		

. . .

2. TARAO RECTARDA HERA & SADA

Synthesis Imaging

Major Cycle: visibility frame

- 1. Subtract model from data to generate residual visibilities
- 2. Grid residual visibilities, iFFT into image frame to produce residual image

Minor Cycle: image frame

- Use specified clean algorithm (e.g. Högbom, multiscale, etc.) to generate model of source
- Source model components convolved with PSF and subtracted from residual image

Back to Major Cycle: visibility frame

3. FFT model image into *uv* frame, de-grid visibilities

Figure from CASA Docs

Before you clean: Imaging Preparation

The 20 Stor Alter Alter & 2 hours

- 1. Inspect your data
 - a. Inspect the weblog see I-TRAIN #4: ALMA WebLog inspection
 - b. listobs: spw&field information
 - c. **plotms**: check *uv* coverage, check for spectral lines, telluric lines, etc.
- 2. Prepare your measurement set
 - a. If needed, **split** science source from calibrated measurement set(s)
 - b. If continuum imaging, optional: **split** out continuum-only MS
 - c. If line imaging: *uv* continuum subtraction with **uvcontsub** if continuum > 3 sigma per channel

Resources:

- ALMAGuides & General Imaging Tutorials: <u>casaguides.nrao.edu</u>
- Video tutorial on imaging: <u>https://youtu.be/yuLKAfroHu4</u>

Material preparation & Let's launch CASA!

7. TARA AN ARTA ARTA ARTAN

In YOUR analysis directory (analysis/USERNAME/): mkdir imaging cd imaging cp -r ../../../scripts/Imaging_*.py ./

```
Scripts involved in this tutorial:
  (a) Imaging_1_basic.py - setting up all tclean parameter in
  interactive style
  (b) Imaging_2_basic_scripted.py - scripted version of (a)
  (c) Imaging_3_uvcontsub.py - basic steps to perform
  continuum subtraction
  (d) Imaging_4_uvtaper_scripted.py - tclean script
  including tapering specification (uvtaper and the associated
  parameters)
```

(you can copy below from the script "Imaging_1_basic.py") cp -r ../../archive/DRT2023/TW_hydra/sis14_twhya_calibrated_flagged.ms.contsub/ ./

nice +10 env -u PYTHONPATH -u LD_LIBRARY_PATH casapy-660

tclean: data selection

+ ARAO ROATER AREA ARADON

CASA <x>: inp tclean

vis =	'sis14_twhya_	_calibrated_flagged.ms.contsub'		
selectdata =	True	# Enable data selection parameters		
field =	'TW Hya'	<pre># field(s) to select</pre>		
spw =	' O '	<pre># spw(s)/channels to select</pre>		
timerange =	11	# Range of time to select from data		
uvrange =	11	# Select data within uvrange		
antenna =	11	# Select data based on antenna/baseline		
scan =	11	# Scan number range		
observation =	11	# Observation ID range		
intent =	1 1	# Scan Intent(s)		

• • •

tclean: get spw & field information from listobs

THERE STORAGE AND A SHORT

```
CASA <x>: vis = 'sis14_twhya_calibrated_flagged.ms.contsub'
CASA <x>: listobs(vis)
CASA <x>: listobs(vis, listfile='listobs.txt')
```

- View listobs output in logger or in file
- Information includes:
 - Observation information (time, field observed, intents)
 - Field information (field IDs, coordinates)
 - Spectral window information (spw IDs, frequencies, bandwidth, spectral resolution)
 - Antenna information (Names, stations, dish diameter, coordinates)

tclean: get spw & field information from listobs

7. TAR 20 STORE THE AREA A SAID

Output:

...

MeasurementSet Name: /yourDirectory/sis14 twhya calibrated flagged.ms.contsub MS Version 2 Observer: cgi Project: uid://A002/X327408/X6f Observation: ALMA Total elapsed time = 4268.11 seconds Data records: 53161 Observed from 19-Nov-2012/07:56:23.5 to 19-Nov-2012/09:07:31.6 (UTC) ObservationID = 0ArrayID = 0Scan FldId FieldName Average Interval(s) Date Timerange (UTC) nRows SpwIds ScanIntent 19-Nov-2012/07:56:23.5 - 08:02:11.3 12 0 TW Hva 8514 [6.05] [OBSERVE TARGET#ON SOURCE] [0] 08:08:09.6 - 08:13:57.310360 [6.05] [OBSERVE TARGET#ON SOURCE] 16 0 TW Hya [0] 08:19:53.9 - 08:25:41.720 0 TW Hya 10321 [0] [6.05] [OBSERVE TARGET#ON SOURCE] 08:32:00.5 - 08:37:48.2 24 0 TW Hya 10324 [0] [6.05] [OBSERVE TARGET#ON SOURCE] [6.05] [OBSERVE TARGET#ON SOURCE] 08:43:45.6 - 08:49:33.428 0 TW Hva 9462 101 [0] [6.05] [OBSERVE TARGET#ON SOURCE] 09:05:15.6 - 09:07:31.636 0 TW Hva 4180 (nRows = Total number of rows per scan) Fields: 1 TD Code Name RA Decl Epoch SrcId nRows 11:01:51.796000 -34.42.17.36600 J2000 53161 0 none TW Hva 0 Spectral Windows: (1 unique spectral windows and 1 unique polarization setups) Frame Ch0(MHz) ChanWid(kHz) TotBW(kHz) CtrFreq(MHz) BBC Num SpwID Name #Chans Corrs ALMA RB 07#BB 2#SW-01#FULL RES 0 384 TOPO 372533.086 610.352 234375.0 372649.9688 2 XX YY

tclean: get spw & field information from listobs

T. WAR AN AND AND AND AND A STORE

<u>Output:</u>

...

Fields: 1 ID Code Name RA Decl Epoch SrcId nRows 11:01:51.796000 -34.42.17.36600 J2000 53161 0 none TW Hva 0 Spectral Windows: (1 unique spectral windows and 1 unique polarization setups) Frame Ch0(MHz) ChanWid(kHz) TotBW(kHz) CtrFreq(MHz) BBC Num SpwID Name #Chans Corrs ALMA RB 07#BB 2#SW-01#FULL RES 0 384 TOPO 372533.086 610.352 234375.0 372649.9688 XX YY

tclean: data selection

+ ARAO ACCORTAN ARA ARADON

CASA <x>: inp tclean

. . .

vis	= 'sis14_twhya_ca	a]
selectdata	= True #	Ε
field	= 'TW Hya' #	f
spw	= '0' #	S
	= '' #	R
	= '' #	S
	= '' #	S
	= '' #	S
	= '' #	0
	= '' #	S

twhya	C	alibrated_flagged.ms.contsub'
	#	Enable data selection parameters
	#	field(s) to select
	#	<pre>spw(s)/channels to select</pre>
		Range of time to select from data
		Select data within uvrange
		Select data based on antenna/baseline
		Scan number range
		Observation ID range
		Scan Intent(s)

tclean: image parameters

CASA <x>: inp tclean

. .

• • •		
datacolumn	= 'data'	# Data column
imagename	<pre>= 'twhya_n2hp43'</pre>	<pre># Pre-name of output images</pre>
imsize	= [240,240]	<pre># Number of pixels</pre>
cell	= '0.1arcsec'	# Cell size
phasecenter	= 0	# Phase center of the image
stokes	= 'I'	# Stokes Planes to make
projection	= 'SIN'	<pre># Coordinate projection</pre>
startmodel	= ''	<pre># Name of starting model</pre>

tclean: determine cell size

T. THE AN AND ALTER HERE IS THE AND A


```
xaxis = 'UVwave',
field = 'TW Hya', spw = '0',
avgtime = '1e6', avgscan = True)
```

```
Calculate: cell (arcsec) = 206265 /
(longest baseline in wavelengths) /
(# pixels across beam)
```

Use averaging in **plotms**, esp. for large datasets!

2. Use AnalysisUtils - does not account for projection of baselines:

```
CASA <x>: au.pickCellSize(vis)
Out[x]: 0.12
```


tclean: determine imsize

+ TARLO STORE THE AREA A PLANT

Rules of thumb:

- image > PB extent (especially non-point sources)
- Select symmetrical values
- Round up to nearest 10 or 100 pixels
- CASA will tell (in logger) if it doesn't like choice
- HPBW Primary Beam (FOV) = $1.02 \lambda / D$
- 1. Get imsize in pixels (note cell size):
 CASA <x>: au.pickCellSize(vis,imsize=True)
 Out[x]: [0.12, [200, 200], 0]
- 2. Plot mosaic:

```
CASA <x>: au.plotmosaic(vis,
    sourceid='TW Hya',
    coord='rel',
    figfile='twhya_pointings_rel.png')
```


tclean: image parameters

- ARAO STORAGE ARAGE A RADIA

CASA <x>: inp tclea</x>	in	
vis	= 'sis14 twhya calibr	rated flagged.ms.contsub'
selectdata	= True	-
field	= 'TW Hya'	<pre># field(s) to select</pre>
spw	= '0'	<pre># spw(s)/channels to select</pre>
	= 1.1	# Range of time to select from data
	= 1.1	# Select data within uvrange
		# Select data based on antenna/baseline
	= 1.1	# Scan number range
	= 1.1	<pre># Observation ID range</pre>
	= 1.1	<pre># Scan Intent(s)</pre>
datacolumn	= 'data'	<pre># Data column to image(data,corrected)</pre>
imagename	= 'twhya n2hp43'	# Pre-name of output images
imsize	= [240, 240]	# Number of pixels
cell	= '0.1arcsec'	# Cell size
phasecenter	= 0	# Phase center of the image
stokes	= 'I'	# Stokes Planes to make
projection	= 'SIN'	<pre># Coordinate projection</pre>
startmodel	_ 11	# Name of starting model image

• • •

Spectral Mode

T. TAR AN AT CONTRACT AND A READER

Spectral Modes

7. WAR 20 STOP THE AREA A 2 MON

For this tutorial, we use:

```
CASA <x>: specmode = 'cube'
```

- nchan, start, and width can be in terms of channel number, frequency, or velocity CASA <x>: nchan = 30 CASA <x>: start = 230 CASA <x>: width = 1
- for z<0.2, can use rest frequency of line (look up with e.g. Splatalogue)
 CASA <x>: restfreq = '372.67250900GHz' # N2H+ J=4-3
- Set velocity parameters:
 CASA <x>: outframe = 'lsrk' # LSR as a kinematical (radio) definition
 CASA <x>: veltype = 'radio' # produces channels of fixed velocity width
- See CASA Docs for more options and precise definitions

Spectral Modes

2 THE 40 STORES AND A SHOP

CASA <x>: inp tclean

. . .

specmode	=	'cube'
nchan	=	30
start	=	230
width	=	1
outframe	=	'lsrk'
veltype	=	'radio'
restfreq	=	'372.67250900GHz'
interpolation	=	'linear'
perchanweightdensity	=	True

Spectral definition mode (mfs... # Number of channels... # First channel (e.g. start=3... # Channel width (e.g. width=2... # Spectral reference frame... # Velocity type (radio... # List of rest frequencies # Spectral interpolation... # whether to calculate weight...

Gridder

+ TARLA STORAGE AND A SMORT

The gridder resamples imaging weights and weighted visibilities onto a uniform uv grid

Recommended:

- gridder = 'standard'
 - operations applied in image-domain to correct for direction-dependent effects
 - use for single pointings
- gridder = 'mosaic'
 - direction-dependent, time-variable and baseline-dependent corrections during gridding in the visibility-domain
 - use for mosaics

For this tutorial:

CASA <x>: gridder = 'standard'

Figure from CASA Docs

Minor-cycle clean algorithms

A TAR AN STORAGE AND A SAMPAN

tclean subparameter: deconvolver

Minor-cycle clean algorithms

T TAR AN ARCA ARE ARE ARE AND A

Recommended:

- **deconvolver** = 'hogbom': adapted version of Hogbom Clean [Hogbom, 1974]
 - assumes point source model of source brightness distribution
 - \rightarrow most appropriate for fields of isolated point sources
 - compute intensive
- deconvolver = 'clark' (or 'clarkstokes'): adapted version of Clark Clean [Clark, 1980]
 - o also assumes point source model of source brightness distribution
 - \circ uses smaller patch of PSF in residual image updates \rightarrow faster than Hogbom
- deconvolver = 'multiscale' (or 'mtmfs'): MultiScale Clean [Cornwell, 2008]
 - scale-sensitive clean, can specify multiple scales
 - assuming sources extended, tapered 'paraboloids'
 - **scales** = []: list of scales (in pixels)
 - use scales up to the smaller of the largest extent of the emission
 - recommended to include a point source scale (pixel size 0)
 - **smallscalebias** = 0.0: value from -1 (biases towards larger scales) to 1 (biases towards smaller scales)

For this tutorial:

```
CASA <x>: deconvolver = 'multiscale'
CASA <x>: scales = [0,5,10]
```

Weighting Schemes

T. TARA A AND A STAR A SADAT

Visibility weights alter the synthesised beam and dynamic range of output image

weighting = 'natural'

- visibilities are weighted by data weights
- lower rms noise, lower resolution

weighting = 'uniform'

- Visibilities in same uv cell are weighted 'uniformly'
- reduces sidelobes, higher rms noise

weighting = 'briggs'

- Compromise between natural & uniform
- **robust** parameter can be adjusted from -2 (uniform-like) to 2 (natural-like)

uvtaper = []

- Applies a Gaussian taper in addition to the weighting scheme
- Only outertaper → can clip inner uv data using uvrange
- Should use with **natural** or briggs with **robust** = 2

Figure from CASA Docs

Weighting Schemes

THERE AND AN AND A SHOP

For this tutorial we will use: CASA <x>: weighting = 'briggs' CASA <x>: robust = 0.5

. . .

CASA <x>: inp tclean</x>	
gridder	= 'standard'
vptable	= ''
pblimit	= 0.2
deconvolver	<pre>- 'multiscale'</pre>
scales	= [0, 5, 10]
smallscalebias	= 0.0
weighting	= 'briggs'
robust	= 0.5
npixels	= 0
uvtaper	= []

#	Gridding options
#	Name of Voltage Pattern table
#	PB gain level…
#	Minor cycle algorithm
#	List of scale sizes (in pixels)
#	Biases the scale

Weighting scheme
Robustness parameter
Number of pixels to determine uv-cell
uv-taper on outer baselines in uv-plane

Masks for Deconvolution

T THE ROAT OF THE ALL ADDRESS

Masks are used to restrict the regions over which clean components are found

usemask = 'user'

- this option can be selected to define regions by hand in the GUI when using interactive = True
- Alternatively, the **mask** subparameter can be specified as an image file, a region file, or a region string

usemask = 'auto-multithresh'

- Available in CASA versions 5.1 and later
- Makes masking spectral line emission easier and faster
- "AUTO-MULTITHRESH: A General Purpose Automasking Algorithm" Kepley et al., 2020 PASP **132** 024505
- Automasking Guide:

casaguides.nrao.edu/index.php/Automasking Guide

Masks for Deconvolution

- ARLO REPAIRS HERE A THOR

For this tutorial we will use: CASA <x>: usemask = 'auto-multithresh'

CASA <x>: inp tclean

. . .

• • •	
usemask	= 'auto-multithresh'
pbmask	= 0.2
sidelobethreshold	= 2.0
noisethreshold	= 4.25
lownoisethreshold	= 1.5
negativethreshold	= 0.0
smoothfactor	= 1.0
minbeamfrac	= 0.3
	= 0.01
	= 75
	= True
	= -1.0
	= False

#	Type of mask(s)
#	primary beam mask
#	sidelobethreshold *
#	noisethreshold *
#	lownoisethreshold *
#	negativethreshold *
	-

minimum beam fraction ...

1. Set initial source mask

Input parameters:

- noisethreshold
- sidelobethreshold

+ HAR AN ARCOMENTS HAR A REPORTS

Fig. 2, Kepley+2020

- Automasking picks largest of the two thresholds
- In this example:
 sidelobeThresholdValue >
 noiseThresholdValue

2. Prune regions

Input parameters:

minbeamfrac

Regions smaller than the minimum beam fraction are pruned

3. Expand initial, pruned mask

Input parameters:

• lownoisethreshold

Fig. 4, Kepley+2020

 Mask is extended to include low signal-to-noise emission

usemask = 'auto-multithresh'

A TARA A STORAGE AND A SMORT

- Behavior of automasking depends on *uv* coverage
- Table of parameter values available on Automasking Guide: <u>casaguides.nrao.edu/index.php/Automasking_Guide</u>
- Can check 75th percentile baselines, b75, using AnalysisUtils
 CASA <x>: au.getBaselineStats(vis)
- b75 = 197.4m, corresponding to 12m (short)
- Meant to be used as a guide, adjust as necessary

Array	sidelobethreshold	noisethreshold	minbeamfrac	lownoisethreshold	negativethreshold
12m (short) b75<300m	2.0	4.25	0.3	1.5	0.0 (continuum)/15.0 (line)
12m (long) b75>300m	3.0	5.0	0.3	1.5	0.0 (continuum)/7.0 (line)
7m (continnum/line)	1.25	5.0	0.1	2.0	0.0
12m + 7m combined TENTATIVE	2.0	4.25	0.3	1.5	0.0

T. TAR 40 STORE THE ALTER A THOM

usemask = 'auto-multithresh'

CASA <x>: inp tclean

. . .

• • •	
usemask	= 'auto-multithresh'
pbmask	= 0.2
sidelobethreshold	= 2.0
noisethreshold	= 4.25
lownoisethreshold	= 1.5
negativethreshold	= 0.0
	= 1.0
minbeamfrac	= 0.3
	= 0.01
	= 75
	= True
	= -1.0
	= False

#	Type of mask(s)
#	primary beam mask
#	sidelobethreshold *
#	noisethreshold *
#	lownoisethreshold *
#	negativethreshold *

minimum beam fraction ...

Setting clean stopping thresholds

T TAR AN ARCA ARE ARE ARE AND

Maximum number of iterations
Loop gain
Stopping threshold
rms-based threshold stopping
Max minor-cycle iterations
Scaling on PSF sidelobe...
PSF fraction max depth...
PSF fraction min depth...
Modify masks and parameters...

• • •

Summary of tclean inputs

T. TARLO STOR ALTER AL STORM

CASA <x>: inp tclean

vis = 'sis14 twhya calibrated flagged.ms.contsub'

selectdata =	True
field =	= 'TW Hya'
spw =	= '0'
datacolumn =	- 'data'
imagename =	<pre>- 'twhya_n2hp43'</pre>
imsize =	= [240,240]
cell =	- '0.1arcsec'
phasecenter =	= 0
•••	
specmode =	'cube'
nchan =	= 30
start =	= 230
width =	= 1
outframe =	- 'lsrk'
restfreq =	- '372.67250900GHz'
-	

= 'standard'
= 'multiscale'
= [0, 5, 10]
= 'briggs'
= 0.5
= 'auto-multithresh'
= 2.0
= 4.25
= 100000
= 2.0
= True

• • •

Summary of tclean inputs (scripted ver.)

T. TARA REAL TRANS AND A SAIN

. . .

```
(Script file Imaging_2_basic_scripted.py)
```

```
tclean(vis='sis14 twhya calibrated flagged.ms.contsub',
       field = 'TW Hya',
       spw = '0',
       datacolumn = 'data',
       imagename = 'twhya n2hp43 interactive',
       cell = '0.1arcsec',
       imsize = [240, 240],
       phasecenter = 0,
       specmode = 'cube',
       start = 230,
       nchan = 30,
       width = 1,
       restfreq = '372.67250900GHz',
       outframe = 'lsrk',
       veltype = 'radio',
       gridder = 'standard',
           . . .
```

deconvolver = 'multiscale', scales = [0, 5, 10],smallscalebias = 0.0, weighting = 'briggs', robust = 0.5, usemask = 'auto-multithresh', sidelobethreshold = 2.0, noisethreshold = 4.25, minbeamfrac = 0.3, lownoisethreshold = 1.5,negative threshold = 0.,niter=100000, threshold = '',nsigma = 2.,pblimit = 0.2, pbmask = 0.2, interactive = True)

Running tclean

T. THERE AN ARCONTRACT AND A STORE

Run tclean:

CASA <x>: go

Inspect each channel:

Create / adjust masks using:

Use green clockwise arrow to continue cleaning & return interactive GUI

Use blue arrow to finish cleaning non-interactively

Use red button to terminate tclean

As cleaning progresses, source emission \rightarrow residuals

T. THERE AN ARCHITER AND A TROATE

Inspect output files

Output image extensions:

- .image, .mask, .model,
- .pb, .psf, .residual,

.sumwt

06"

09"

12"

15"

18"

21"

24"

11^h01^m52^s.6

52^s.0

J2000 Right Ascension

51^s.6

-34°42'27"

+others for different imaging setups

Image, channel 14

2.8685 km/s

51°.2

- Inspect the clean components of the model
- Check residuals to see if there is any

"uncleaned" emission

Residual

Additional bits: Primary beam correction (pbcor=True)

Additional bits: Continuum subtraction

THERE AND AND AND A STORE AS A STORE

```
(Script file Imaging_3_uvcontsub.py)
```

Additional example: tapering

THERE AN ARCHINE AND A REPORT

(Script file Imaging_4_uvtaper_scripted.py)

- Create new image with larger synthesized beam:
 ~0.4x0.6'' to ~0.8''
- Estimate uvtaper with CASA tool: ia.beamforconvolvedsize

```
CASA <x>: inp tclean
```

. . .

. .

imagename	<pre>= 'twhya_n2hp43_taper'</pre>
CEII	= 'U.lbarcsec'
imsize	= [150,150]
• • •	
weighting	= 'briggs'
robust	= 2
uvtaper	= ['0.67arcsec',
	'0.54arcsec',
	'32.16deg'

Additional bits: parameter customization

weighting = 'natural'

lower rms noise, lower resolution

= 'uniform'

reduces sidelobes, higher rms noise

= 'briggs'

robust parameter can be adjusted from -2 (uniform-like) to 2 (natural-like): **0.5** in our original setup

+ TARA ANTA AND A THOM

usemask = 'auto-multithresh'

= 'user'

Happy cleaning!